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Abstract—In industry, cellular tower locations have primarily

been modeled by a deterministic hexagonal grid. Since real

deployments are rarely regular, the even spacing between nodes

in the grid and constant Voronoi cell areas make the hexagonal

grid unrealistic. In this paper we use tools from spatial statistics

to show that a purely random node placement and a hexagonal

grid distribution with the points perturbed also have unrealistic

spatial relationships between nodes, and that pairwise interac-

tions between nodes are necessary, and in most cases sufficient,

for modeling spatial qualities of cellular networks. We detail the

benefits of using pairwise point interactions in modeling both a

coverage-centric tower deployment and a capacity-centric tower

deployment. We propose using pairwise and saturated pairwise

interaction point processes from the Gibbs process family of

point processes: the Strauss Hardcore process for inhibitive point

patterns and the Geyer Saturation process for clustered point

patterns. Due to its relationship with the coverage areas, we also

propose that the Voronoi cell area distribution can be used as a

test statistic in general spatial modeling of cellular networks.

I. INTRODUCTION

Driven by exponential increase in network traffic and ex-
pectations of ubiquitous access, modern cellular networks
continue to evolve from highly regular voice/coverage-oriented
deployments to spatially dense data-driven deployments with
multiple tiers of access points [1].

Evaluating the performance of wireless networks is essential
to understanding system-wide trends and furthering research
and development of new algorithms, which requires capturing
the complexity of real deployments as accurately as possible.
One of the most significant technical challenges in modeling
cellular networks arises from to the interdependence of base
station locations among themselves as well as with the user
locations. The resulting distribution of the interference is
sensitive to this dependence and has a critical impact on
performance in modern networks which are primarily limited
by inter-cell interference.

A. Related Work
By far the most popular approach in academia and industry

has been to model base station locations according to a de-
terministic hexagonal grid model [2]. This approach has been
successful in creating well-defined simulation scenarios that
allow calibration across organizations and is used by standards
bodies like the 3rd Generation Partnership Project (3GPP).
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However, the network topology of real deployments is rarely
regular due to regulatory factors restricting site acquisition and
placement, topological factors which cause the propagation
environment to vary significantly over a deployment area, and
economic and demographic factors such as unequal demand
for capacity in urban versus rural regions.

A regular grid approach can be scaled for larger or smaller
cell sizes by varying the inter-site distance to adjust to different
simulation scenarios, but this does not change the homogeneity
of the deployment. One approach to introduce non-uniformity
is to maintain the overall grid structure but induce a random
perturbation of the base station locations [3]. Additionally, a
novel non-regular but deterministic model called the Spring-
wald layout was proposed in [4]. The layout is based on
Archimedes’s spiral, making it simple to implement in sim-
ulations while providing scalability similar to the hexagonal
grid, but with varying inter-site distances. The choice of these
parameters is however heuristic and it is not clear whether they
capture the interdependence of deployments in their clustering
or dispersion. Also system evaluations have been performed
using actual base station locations [5]. However, the use of real
locations is not a scalable approach as networks are constantly
evolving and this approach only gives insights into a specific
deployment.

A fundamentally alternative approach is the use of random
spatial models, i.e., the Poisson point process (PPP) [6].
This new approach is advantageous both in capturing the
non-uniformity of deployments, especially applicable in the
context of heterogeneous networks, and in its ability to derive
tractable expressions for key performance metrics of coverage
and average rate as a function of system parameters instead
of relying on detailed and complex system simulations [7]–
[10]. Although it is shown to be about as accurate as the
grid model when compared to an actual cellular network
deployment in [8], one drawback of either approach is that they
do not take into account inter-point interactions arising from
the site-planning process conducted by the operator. In order
to model performance as accurately as possible, it is important
to first understand the exact nature of the spatial processes that
describe these deployments. Therefore, the main goal of this
paper is to extract useful features from actual location data
that can be used to develop more realistic models for general
macrocellular deployments.

B. Contributions
The main contributions of this paper are as follows:

Realistic Spatial Models for Cellular Networks. Since
macrocellular deployments are in general neither too regular



nor too clustered, it provides an ideal setting to use Gibbs
models [11]. As a main contribution, we show that pairwise
interaction is in general necessary and in most cases sufficient
to model certain real world deployments. Furthermore, we
show that simple pairwise and saturated pairwise interaction
models, such as Strauss process for inhibitive deployments
and its generalization Geyer saturation process for clustered
deployment, are enough to model wide variety of deployment
scenarios. Recently the Geyer Saturation process model was
also used to accurately model the spatial characteristics of an
outdoor Wi-Fi deployment maintained by Google in Mountain
View, California [12].
Voronoi Cell Area Distribution as a Possible Metric.

Second, we propose to use Voronoi cell area distribution as a
possible metric for spatial modeling of cellular networks due
to its relationship with the base station coverage regions. For
example, an irregular deployment is expected to have higher
variance in the cell areas than the regular one. Using this
proposed metric, we show that the state-of-the-art grid model
along with its popular variants involving cell site perturbations
do not accurately capture spatial dependence and hence is
not the most accurate model, even for simulation studies. As
discussed in the sequel, other popular summary statistics, such
as signal-to-interference-ratio (SIR) distribution and Ripley’s
K-function are unable to reach this conclusion.

II. BACKGROUND – GIBBS MODELS

Gibbs models offer a remarkably general, flexible and pow-
erful family of distributions for modeling point processes [11].
Since they are constructed from the probability densities, they
are particularly useful in modeling the inter-point interactions
in point patterns. To highlight this point, we consider a point
pattern z = {z1, z2, . . . , z

n(z)} confined in a bounded window
W , where n(z) = |z|. Since we are assuming z to be a
random point pattern, n(z) is not fixed and may as well be 0.
Although Gibbs spatial processes can be used to model general
inter-point interaction, we focus our attention on a simple
“pairwise interaction model” in this paper, which is sufficient
for macrocellular modeling. For this model, the probability
density f(z) can be expressed in the product form as follows:
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where ↵ is the normalizing factor to ensure the probability
density integrates to unity, �(z) is the function modeling the
“first order trends” and  (z

i

, z

j

) are the functions modeling
the pair-wise interaction.

Now we introduce two special cases for our study: the
Strauss process [13], which is useful in modeling inhibition,
and its generalization the Geyer saturation process [14], which
models both inhibition and clustering. The Strauss process is
defined by taking �(z
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The probability density function is

f(z) = ↵�

n(z)
�

s(z)
, (3)

where s(z) is the number of distinct pairs of points less than
an interaction radius r units apart. Clearly �  1 models
inhibition. However, this probability density is not integrable
for � > 1 and hence cannot be used to model clustering [15].
Nevertheless, this can be overcome by including a saturation
limit in the exponent of � to obtain the following density
function:

f(z) = ↵�

n(z)
�

min(s(z),t)
. (4)

This is termed as the Geyer saturation process. It reduces to
a PPP for t = 0 and a Strauss process for t ! 1.

Gibbs models are simulated using Markov Chain Monte
Carlo (MCMC) algorithms [16]. The main idea behind these
algorithms is to define a Markov chain whose states are point
patterns for the Gibbs model. The equilibrium distribution of
the chain is designed to be the distribution of the point process
that is to be simulated. For this work, we use the Metropolis-
Hastings algorithm provided in Spatstat, an R package [14].

III. PROPOSED MODELS FOR MACROCELLS

In this paper we investigate the point patterns x and y which
are subsets of the tower deployments of two of the U.S.’ 10

largest metropolitan areas. Point pattern x is from a sprawling,
landlocked city, while y is from a coastal area. Since x is an
inhibitive point pattern and y is a clustered point pattern, taken
together they cover a wide range of tower deployments. Both
point patterns have 165 nodes and have been mapped to a unit
square as shown in Figs. 1 and 2.

A. Proposed Summary Statistics
For hypothesis testing, we use the following three summary

statistics:
SIR Distribution: Assuming equal tower transmit powers,
the expression for SIR at a point z in the point pattern z,
connecting to the nearest node y is:

SIR(z, z) =
h

y

d(z, y)

�↵

P
x2z\y hx

d(z, x)

�↵

, (5)

where we assume h

y

, h

z

⇠ exp(1) to model Rayleigh fading
and ↵ denotes the path loss exponent assumed to be 4 to model
an outdoor scenario. The SIR distribution plays a crucial role
in cellular analysis since its CDF defines the outage probability
of a typical mobile in the network [8]–[10].
Voronoi Cell Area Distribution: The Voronoi cell of a node
z 2 z is defined as {y 2 R2

: d(y, x) > d(y, z), 8 (x 2 z\z)}.
We propose to use this metric for spatial modeling of cellular
networks due to its close relationship with the coverage regions
of the base stations. For example, an irregular deployment is
expected to have a higher variance in the coverage areas and
hence of the Voronoi cell areas than a regular deployment.
Additionally, cell sizes play a central role in the study of
important performance metrics, such as hand-off rate.
Node Clustering Metric: To differentiate between an in-
hibitive and clustered point pattern, we define g(r) as:

g(r) =

p
E[n(z, r)] (6)

where n(z, r) is the number of nodes within a distance r of a
randomly chosen node. The function g(r) describes clustering



Fig. 1. (left): Point Pattern x, a tower deployment which exhibits inhibition
between nodes. (right): Realization of Strauss Hardcore process fitted to x.

within a radius r from a typical point and has a linear trend.
If K(r) is Ripley’s K function, g(r) is equivalent to

p
�K(r).

For a Poisson process, g(r) =

p
⇡r

2
�. We used g(r) to

determine whether a point pattern was clustered and should
be modeled with a Geyer Saturation process, or inhibitive and
should be modeled with a Strauss Hardcore process. Clustered
point patterns will have values of g(r) greater than a Poisson
process, while inhibitive point patterns will have values lower.
This is true at lower values of r, as g(r) for any homogeneous
point process tends toward

p
⇡r

2
� as r becomes large. This

metric is very similar to the Besag-Ripley L-function [17]. It
should not be confused with the pair correlation function.

Other popular metrics used for studying point patterns that
were not used in this paper include empty space distance
distributions, nearest neighbor distributions, and the J-function,
which relates the empty space distance and nearest neighbor
distributions [18].

B. Fitted Models and Evaluation Method
Using g(r) we first determine whether a given data pattern

is inhibitive or clustered. For example, using this test we
can easily see that the point pattern x is inhibitive whereas
y is clustered. Therefore, we fit a Strauss hardcore process
with parameters r = .048, h = .0164, and � = .1944 to
x and a Geyer saturation process with parameters r = .01,
t = 2, and � = 2.2255 to y. While all other parameters
have been defined earlier, h is specific to the hardcore process
and provides a minimum allowed distance between two points.
We fit these pairwise interaction parameters using the method
of maximum profile pseudolikelihood fitting and the method
of maximum pseudolikelihood provided in Spatstat [19]. We
test the hypotheses that x and y are realizations of Strauss
hardcore and Geyer saturation processes, respectively, and
show that these hypotheses cannot be rejected using the
three metrics described earlier. The fact that the Voronoi cell
area distribution, which is a higher-order property of a point
pattern, of these second-order interaction processes closely
approximates those of actual data highlights the sufficiency
of using second-order interactions.

We also compare x to a hexagonal grid with points per-
turbed in a random direction by a distance d, where d is
a uniform random variable between 0 and zr with r being
the inner radius of the hexagonal cells. This model, which is

Fig. 2. (left): Point Pattern y, a tower deployment which exhibits node
clustering. (right): Realization of a Geyer Saturation process fitted to y.

widely used in industry, can be no more effective than a PPP
at modeling a clustered tower distribution. This is because as z
goes infinity, this model becomes a PPP. In our modeling, we
tuned z to .65, a value where it had a g(r) similar to the point
pattern x. Even with this model’s g(r) tuned to be similar to
x’s, this process’ Voronoi cell area distribution is much more
regular than what we see in the real deployment, highlighting
an important limitation of this model.

IV. HYPOTHESIS TESTING OF MODEL VALIDITY

For hypothesis testing, we generate 600 realizations each
of a PPP (to test if the data sets exhibit complete spatial
randomness), a hexagonal grid with perturbed points, the fitted
Strauss Hardcore process, and the fitted Geyer Saturation
process. For each of the three metrics used in this paper, we
sample all 600 realizations of each process, and throw out
the 30 highest and 30 lowest values to create 90% confidence
intervals.

Using SIR: A PPP will rarely generate a node placement
that has similar coverage probability to a coverage-centric
deployment, which is likely to be more regular. Based on the
SIR metric we can reject the hypothesis that x is Poisson as
seen in Fig. 3. The SIR of y lies within the PPP confidence
interval, so we cannot reject the hypothesis that y is Poisson
based on SIR. Neither can we reject the hypothesis that y is a
hexagonal grid with perturbed points based on this metric as
seen in Fig. 4. Not only can we not reject the hypotheses that
x and y are Strauss Hardcore and Geyer Saturation processes,
respectively, but the SIRs of these processes match those of
the actual data almost exactly as seen in Figs. 5 and 6.

TABLE I
VORONOI CELL AREA MEAN AND STANDARD DEVIATION

Process µ �
Poisson 1 .525

Geyer Saturation 1 .611
Strauss Hardcore 1 .341

Perturbed Hex Grid 1 .212
Point Pattern µ �

x 1 .324
y 1 .646

Using Voronoi Cell Area Distribution: Based on the cell
area distributions, we can reject the hypothesis that x is
Poisson, but we cannot reject the hypothesis that y is Poisson
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Fig. 3. Rejection of the hypothesis that x is Poisson by SIR.
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Fig. 4. x’s SIR lies within bounds of a hexagonal grid with perturbed points.

as seen in Fig. 7. We can reject the hypothesis that x is a
hexagonal grid with perturbed points as seen in Fig. 8. This
highlights a strength of using the Voronoi cell area distribution
as a metric for evaluating the accuracy of model compared to
actual tower deployments. In the case of the hexagonal grid
with perturbed points, the Voronoi cell area distribution reveals
it has spatial structure different than the real deployment x. We
cannot reject the hypothesis that x is a realization of a Strauss
Hardcore process or the hypothesis that y is a realization of
a Geyer Saturation process as seen in Figs. 9 and 10.

Our measurement of the standard deviation � of the reduced
cell areas of a PPP is .525, close to .529 which is the standard
deviation measured in the extensive simulation done in [20].
We include the standard deviation measurements for the other
processes we used in Table I, where it can be seen that the
standard deviation of Voronoi cell areas of x and y are closest
to those of the Strauss Hardcore process and Geyer Saturation
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Fig. 5. x’s SIR lies within bounds of a Strauss Hardcore process.
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Fig. 6. y’s SIR lies within bounds of a Geyer Saturation process.

process, respectively.
Using Node Clustering Metric g(r): By using g(r), we

can reject the hypothesis that either x or y is Poisson as seen in
Fig. 11. We cannot reject the hypothesis that x is a hexagonal
distribution with perturbed points by this metric as seen in
Fig. 12. This is because we chose the z parameter of point
perturbation so that the model would closely match this point
pattern by this metric. We cannot reject either the hypothesis
that x is a realization of a Strauss Hardcore process or the
hypothesis that y is a realization of a Geyer Saturation process
as seen in Figs. 13 and 14.

V. CONCLUSION

In this paper we tested the hypothesis that either of two
different types of tower deployments were realizations of
Poisson processes. We rejected this hypothesis using SIR,
Voronoi cell area distributions, and a modified Ripley’s K
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Fig. 7. Rejection of the hypothesis that x is Poisson distributed. y lies within
bounds of a Poisson realization.
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Fig. 8. Rejection of the hypothesis that x is a hexagonal grid with perturbed
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function. We showed that by using the same metrics we cannot
reject the hypothesis that both point patterns were realizations
of pairwise and saturated pairwise interaction processes fitted
to them. Finally, we used Voronoi cell area distributions to
show that variations of the hexagonal grid do not accurately
model coverage cell size, an important spatial characteristic of
cellular networks.

Future work can be done estimating parameters of these
pairwise interaction processes without knowing the actual node
placement by, for example, using population or terrain data.
These ideas can be extended to multi-tier networks. In a K-
tier network, there can be up to T (K), the triangular number
sequence, different pairwise interactions, one for each pairing
of the types of nodes.
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Fig. 9. x’s Voronoi cell area distribution lies within bounds of a Strauss
Hardcore process.
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