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Abstract—Current wireless networks are becoming increas-

ingly heterogeneous both in terms of the radio access technologies

(RATs) and the base station capabilities. Downlink rate or

throughput in such heterogeneous networks is a crucial metric

and has been primarily studied using system level simulations.

To derive the distribution of rate analytically we develop a fairly

general tractable model that consists of M different RATs, each

deploying up to K different classes of access points (APs), where

each class differs in transmit power, path loss exponent, and de-

ployment density. Each class of APs is modeled as an independent

Poisson point process (PPP), with mobile user locations modeled

as another independent PPP, all channels further consisting of

i.i.d. Rayleigh fading. Using a weighted association strategy, the

distribution of rate over the entire network is derived. Further,

it is shown that in a two-RAT setting there exists an optimum

fraction of traffic that should be associated with each RAT to

maximize rate coverage, defined as the fraction of users achieving

a given rate.

I. INTRODUCTION

Increasing heterogeneity in current cellular networks is
further complicating their mathematical analysis, which is
known to be hard even for conventional single-tier networks.
Traditional (macro) cellular networks are being overlaid with
dense deployments of low-power base stations (pico, femto,
relay) in order to eliminate coverage holes and/or boost ca-
pacity in the macro-only system [1]. Further, the fast evolving
heterogeneous cellular networks (HCNs) are being comple-
mented with the already widely deployed WiFi access points
(APs) [2]. Given the exponential growth of wireless traffic [3],
wireless networks are expected to become denser and more
heterogeneous.

There has been considerable advancement in the theory of
HCNs [4]–[6] whereby the location of APs of each tier is
assumed to be a homogeneous PPP. The case of modeling
macro cellular networks using a PPP has been strengthened
through empirical validation in [7] and theoretical validation
in [8]. While the PPP assumption offers attractive tractability
in modeling interference and hence the signal-to-interference-
and-noise ratio (SINR) in HCNs, the distribution of rate has
been elusive. An empirical fitting based approach for associa-
tion area distribution in a two-tier cellular network and hence
rate distribution was proposed in [9]. For general settings,
superposition of point processes, each denoting a class of
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APs, leads to the formation of disparate association regions
(and hence load distribution) due to differing transmit powers,
path loss exponents, and association weights among classes.
Thus, resolving to complicated system level simulations for
investigating impact of various wireless algorithms on rate,
even for preliminary insights, is not uncommon [1], [2]. The
goal of this paper is to bridge this gap and provide a tractable
framework for deriving the rate distribution in such HetNets.

In this paper, a general M -RAT K-tier heterogeneous
network (HetNet) model is proposed with APs of each tier
of each RAT drawn from a homogeneous PPP. This is similar
to [4]–[6] with the key difference being the APs of a RAT
act as interferers to only the user associated with that RAT.
The proposed model is validated by comparing the analytical
results with those of a realistic multi-RAT deployment. The
main contributions of the paper are summarized below.
Association Regions in HetNet: Distribution of the load
or the number of users associated with an AP in HetNets
requires characterization of the association regions. Based on
the weighted path loss based user association used in this
work, the tessellation formed by the association regions of
APs (region served by the AP) is identified as a general
form of the multiplicatively weighted Poisson Voronoi (PV).
Much progress has been made in modeling areas of PV, see
[10] and references therein, however that of multiplicatively
weighted PV is an open problem. We propose an analytical
approximation for characterizing the association areas (and
hence the load) of an AP which is shown to be quite accurate
in the context of rate distribution.
Rate Distribution in HetNet: We derive the probability that
a randomly located user has rate greater than an arbitrary
threshold, which is called rate coverage. Equivalently this is
the complementary cumulative distribution function (CCDF)
of rate over the entire network. Under certain plausible sce-
narios the derived expression is in closed form. Our analysis
shows that in a simplified two-RAT scenario there exists an
optimal amount of traffic that should be offloaded from one
RAT to another for maximizing rate coverage.

II. SYSTEM MODEL

The system model in this paper considers up to a K-tier
deployment of the APs for each of the M RATs. The set of
APs belonging to the same RAT operate in the same spectrum
and do not interfere with the APs of other RATs. The locations
of the APs of the k

th tier of the m

th RAT are modeled as a
2-D homogeneous PPP �mk of density �mk. The pair (m, k)
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is used to denote the APs of kth tier of the m

th RAT. The set of
all such pairs with non-zero densities in the network is denoted
by V =

SM
m=1

S
k2V

m

(m, k) with Vm denoting the set of all
the tiers of RAT-m, i.e., Vm = {k : �mk 6= 0}. Further, the
users in the network are assumed to be distributed according
to an independent homogeneous PPP �u with density �u.

Every AP of (m, k) transmits with the same transmit
power Pmk over bandwidth Wmk. The downlink desired
and interference signals are assumed to experience path loss
with a path loss exponent ↵k for the corresponding tier k.
The power received at a user from an AP of (m, k) at a
distance x is Pmkhxx

�↵
k , where hx is the channel power gain.

The random channel gains are Rayleigh distributed with unit
average power, i.e., h ⇠ exp(1). General fading distributions
can also be considered at some loss of tractability [11]. The
noise is assumed additive with power �2

m corresponding to the
m

th RAT, which is in general different for different RATs due
to different transmission bandwidths.

A. User Association

For the analysis that follows, let Zmk denote the distance of
the typical user from the nearest AP of (m, k). In this paper,
a general association metric is used in which a mobile user is
connected to a particular RAT-tier pair (i, j) if

(i, j) = arg max

(m,k)2V
TmkZ

�↵
k

mk , (1)

where Tmk is the association weight for (m, k) and ties are
broken arbitrarily. For notational brevity we define

ˆ

Tmk , Tmk

Tij
,

ˆ

Pmk , Pmk

Pij
, and ↵̂k , ↵k

↵j
,

which respectively characterize the association weight ratio,
transmit power ratio, and path loss exponent ratio of a non-
serving BS to the serving BS. The association model described
above leads to the formation of association areas in the 2-D
Euclidean plane as described below.

Definition 1. Association region of an AP is the region of
the Euclidean plane in which all users are served by the
corresponding AP. Mathematically, the association region of
an AP of class (i, j) located at x is

Cx
ij

:

=

(
y 2 R2

: ky�xk 
✓

Tij

Tmk

◆1/↵
j

ky�Zmkk↵k

/↵
j

8 (m, k) 2 V
)
. (2)

The random tessellation formed by the collection {Cx
ij

} of
association regions is a general case of the circular Dirichlet
tessellation [12]. Fig. 1 shows the association regions with two
classes of APs in the network (V = {(1, 1); (2, 3)}, say) for
two ratios of association weights. The path loss exponent used
in the figure is ↵k ⌘ 4 (“⌘” is henceforth used to assign the
same value to a parameter for all classes of APs).

Association region expansion

Fig. 1. Association regions of a network with V = {(1, 1); (2, 3)}. The APs
of (1, 1) are shown as hollow circles and those of (2, 3) are shown as solid
diamonds. Solid lines show the association regions with T11

T23
= 20 dB and

dotted lines show the expanded association regions of (2, 3) resulting from
the use of T11

T23
= 10 dB.

B. Resource Allocation

Proportional rate allocation is assumed, where the rate
allocated to each user is proportional to its spectral efficiency.
Further, user queues are assumed to be saturated implying that
each AP always has data to transmit to its associated mobile
users. Thus, the rate of a user associated with (i, j) is

Rij =
Wij

Nij
log (1 + SINRij) , (3)

where Nij denotes the total number of users served by the
AP, henceforth referred to as the load. The presented rate
model captures both the congestion effect (through load) and
proximity effect (through SINR).

The analysis in this paper is done for a typical user located
at the origin. This is allowed by Slivnyak’s theorem [13] which
states that the properties observed by a typical1 point of a PPP,
�, is same as those observed by a node at origin in the process
�[ {0}. The SINR of a typical user associated with an AP of
(i, j) located at y is

SINRij(y) =
Pijhyy

�↵
j

P
k2V

i

Iik + �

2
i

, (4)

where hy is the channel power gain from the tagged AP
(AP serving the typical mobile user) located at a distance y,
Iik denotes the interference from the APs of RAT-i in the
tier k. The set of APs contributing to interference are fromS

k2V
i

�ik \ o where o denotes the tagged AP from (i, j).
Thus,

Iik = Pik

X

x2�
ik

\o

hxx
�↵

k

. (5)

1The term typical and random are interchangeably used in this paper.
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III. RATE COVERAGE

This section derives the rate coverage, which can be for-
mally defined as

R = P(R > ⇢), (6)

and can be equivalently thought of as (i) the probability that
a randomly chosen user can achieve a rate threshold ⇢, (ii)
the average fraction of users in the network who at any time
achieve rate ⇢, or (iii) the average fraction of the network area
that is receiving rate greater than the rate threshold ⇢.

A. Load Characterization
The number of users associated to an AP is dependent on its

association area. The following lemma gives the association
probability of a typical user to a RAT-tier pair.

Lemma 1. The probability that a typical user is associated
with (i, j) is given by

Aij = 2⇡�ij

Z 1

0
z exp

0

@�⇡

X

(m,k)2V

Gij(m, k)z

2/↵̂
k

1

A
dz,

(7)
where

Gij(m, k) = �mk
ˆ

T

2/↵
k

mk (8)

If ↵k ⌘ ↵, then the association probability is simplified to

Aij =
�ijP

(m,k)2V Gij(m, k)

. (9)

Proof: The result can be proved by a minor modification
of Lemma 1 of [5]. See [14] for the detailed proof.

As observed from the above lemma, the association prob-
ability to (i, j) is directly proportional to the corresponding
density and association weights. The following two remarks
provide an alternate interpretations of the association proba-
bility.
Remark 1. The probability that a typical user is associated with
the i

th RAT is given by Ai =

P
j2V

i

Aij . This probability
is also the average fraction of the traffic offloaded, referred
henceforth as traffic offload fraction, to the i

th RAT.
Remark 2. Aij is the average fraction of the total area covered
by the association regions of the APs of (i, j).

Based on Remark 2 we note that the association area of
(i, j) has mean A

ij

�
ij

. Below we propose a linear scaling based
approximation for association areas in HetNets which matches
the first moment.
Area Approximation: The area Cij of a typical AP of the j

th

tier of the i

th RAT can be approximated as

Cij = C

✓
�ij

Aij

◆
, (10)

where C (y) is the area of a typical cell of PV of density y (a
scale parameter).
Remark 3. The approximation is trivially exact for a single
tier, single RAT scenario, i.e, for kVk = 1.

Remark 4. If Tmk ⌘ T and ↵k ⌘ ↵, then the approximation
is exact. In this case, Aij =

�
ijP

(m,k)2V �
mk

and

C

✓
�ij

Aij

◆
= C

0

@
X

(m,k)2V

�mk

1

A
. (11)

With equal association weights and path loss coefficients the
HetNet model becomes the superposition of independent PPPs
which is again a PPP with density equal to the sum of that of
the constituents and hence the resulting tessellation {Cx} is a
PV. The right hand side of the above equation is equivalent to
a typical association area of a PV with density

P
(m,k)2V �mk.

Remark 5. Using the distribution proposed in [10] for C(y)

the distribution of Cij is

fC
ij

(c) =

3.5

3.5

�(3.5)

�ij

Aij

✓
�ij

Aij
c

◆2.5

exp

✓
�3.5

�ij

Aij
c

◆
. (12)

where �(x) =

R1
0 exp(�t)t

x�1
dt is the gamma function. We

note that the distribution above involves a two-fold approx-
imation, but, as is shown later, the overall approximation is
quite accurate.

To characterize the load at the tagged AP, the implicit area
biasing needs to be considered and the probability generating
function (PGF) of the other – apart from the typical – users
(No,ij) associated with the tagged AP need to be characterized.

Lemma 2. The PGF of the other users associated with the
tagged AP of (i, j) is

GN
o,ij

(z) = 3.5

4.5

✓
3.5 +

�uAij

�ij
(1� z)

◆�4.5

. (13)

Furthermore, the moments of No,ij are given by

E
⇥
N

n
o,ij

⇤
=

nX

k=1

✓
�uAij

�ij

◆k

S(n, k)E
⇥
C

k+1
(1)

⇤
, (14)

where S(n, k) are Stirling numbers of the second kind.

Proof: See Appendix A.
The moments of the typical association region of PV of unit

density are available in [15].

B. Main Result
The rate coverage of a typical user in a generic HetNet

setting is stated in the following theorem.

Theorem 1. The rate coverage of a randomly located mo-
bile user in the general HetNet setting of Section II is
given by (15) (at the top of next page), where ⇢ij is
the rate threshold for (i, j), ⇢̂ij , ⇢ij/Wij , t(x) =

2

x � 1, Z(a, b, c) = a

2/b
R1
( c

a

)2/b
du

1+ub/2 , Dij(k, ⌧ij) =

ˆ

P

2/↵
k

ik �ikZ
⇣
⌧ij ,↵k,

ˆ

Tik
ˆ

P

�1
ik

⌘
, and SNRij(y) =

P
ij

y�↵

j

�2
i

.

Proof: See Appendix B
The rate distribution expression for the most general setting

requires a single numerical integral and use of lookup tables
for Z and �. Since R decays rapidly for large n, the summation
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R =

X

(i,j)2V

2⇡�ij

X

n�0

3.5

3.5

n!

�(n+ 4.5)

�(3.5)

✓
�uAij

�ij

◆n

⇥
✓
3.5 +

�uAij

�ij

◆�(n+4.5)

⇥
Z 1

0
y exp

 
� t(⇢̂ij(n+ 1))

SNRij(y)
� ⇡

8
<

:
X

k2V
i

Dij(k, t(⇢̂ij(n+ 1)))y

2/↵̂
k

+

X

(m,k)2V

Gij(m, k)y

2/↵̂
k

9
=

;

!
dy, (15)

¯R =

X

(i,j)2V

2⇡�ij

Z 1

0
y exp

 
� t(⇢̂ij

¯

Nij)

SNRij(y)
� ⇡

8
<

:
X

k2V
i

Dij(k, t(⇢̂ij
¯

Nij))y
2/↵̂

k

+

X

(m,k)2V

Gij(m, k)y

2/↵̂
k

9
=

;

!
dy , (16)

over n in Theorem 1 can be accurately approximated as a
finite summation to a sufficiently large value Nmax. Particularly
Nmax = 4�u is found to be sufficient in our results presented
in Section IV-A.

The rate coverage expression can be further simplified
(sacrificing accuracy) if the load at each AP of (i, j) is
assumed to equal its mean, which simplifies the rate coverage
expression by eliminating the summation over n.

Corollary 1. The rate coverage with the mean load approxi-
mation is given by (16) (at the top of page) where

¯

Nij = E [Nij ] = 1 +

1.28�uAij

�ij
. (17)

Proof: Using an approximation for (26) with
EN

ij

[Sij (t(Nij))] ⇡ Sij (t(E [Nij ])), Lemma 2 gives
the first moment of load as E [Nij ] = 1 + E [No,ij ] =

1 +

�
u

A
ij

�
ij

E
⇥
C

2
o (1)

⇤
. Further, using the result that

E
⇥
C

2
o (1)

⇤
= 1.28 [15], the simplified rate coverage

expression is obtained.

IV. VALIDATION AND RESULTS

In the discussion that follows we use a specific form of the
association weight as Tmk = PmkBmk corresponding to the
biased received power based association [1] where Bmk is the
association bias for (m, k). In all the results that follow, the
transmit powers are Pm1 = 46 dBm, Pm2 = 33 dBm and
Pm3 = 23 dBm 8m and Wmk ⌘ 10 MHz. Further, the bias
associated with (1, 1) is normalized to 1, or B11 = 0 dB.

A. Validation
In this subsection, the emphasis is on validating the area

and mean load approximation (Theorem 1 and Corollary 1 re-
spectively) proposed in the previous sections and on validating
the PPP as a suitable AP location model.

1) Analysis: A three-RAT network with V =

{(1, 1), (2, 2), (3, 3)} is considered with deployment densities
�11 = 1 BS/km2, �22 = 3 BS/km2, �33 = 10 BS/km2, user
density of �u = 50 users/km2, path loss exponents ↵1 = 3.5,
↵2 = 3.8, and ↵3 = 4. Fig. 2 shows the rate distribution
obtained through simulation and that from Theorem 1 and
Corollary 1 for two sets of association bias values. As can
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Fig. 2. Rate distribution obtained from simulation, Theorem 1 and Corollary
1 for �22 = 3�11, �33 = 10�11 and ↵1 = 3.5, ↵2 = 3.8, ↵3 = 4.

be observed from both the plots, the analytical distributions
closely match with the simulated ones and thus validate the
analysis of the previous section. Surprisingly, the mean load
approximation is not far off from the exact curves.

2) Spatial Location Model: To simulate a realistic two-RAT
scenario, the cellular BS location data of a major metropolitan
used in [7] is overlaid with that of an actual WiFi deployment
[16]. Along with the PPP, a square grid based location model
in which the APs for both the RATs are located in square
lattice (with different densities) is also used in the following
comparison. Denoting the macro tier of cellular BS as (1, 1)

and WiFi APs as (2, 3), V = {(1, 1); (2, 3)} in this setup. The
superposition is done such that �23 = 10�11. Fig. 3 shows the
rate distribution of a typical user obtained from the real data
along with that of a square grid based model and that from
a PPP, i.e., Theorem 1 for two cases. As shown in the plot,
Theorem 1 is quite accurate in the context of rate distribution
with regards to the actual location data.
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Fig. 3. Rate distribution comparison for the three spatial models: real, grid
and PPP for a two-RAT setting with �23 = 10�11 and ↵1 = ↵3 = 4.

B. Offloading and Rate Coverage

Proactive offloading of users to low power APs is important,
as load disparity not only leads to sub-optimal rate coverage
due to underutilization of resources but also degrades the
performance of many applications due to bursty interference
caused by the lightly loaded APs [17], [18]. To investigate
the impact of offloading on rate we consider a setting of
larger tier of RAT-1 overlaid with a low power tier of RAT-
2, i.e., V = {(1, 1); (2, 3)}. This setting is similar to the
widespread use of WiFi APs to offload macrocell traffic. In
particular, we investigate the effect of association bias on the
5

th percentile rate ⇢95 with R(⇢95) = 0.95 (i.e., 95% of the
user population receives a rate greater than ⇢95). Variation of
the 5th percentile rate with the association bias is shown in Fig.
4 for different densities of RAT-2 APs. In these results, the user
density �u = 100 users/km2 and the path loss exponents are
↵k ⌘ 3.5. At any particular association bias, as infrastructure
density increases, ⇢95 also increases because of the decrease
in load at each AP. However, the optimum association bias
for ⇢95 decreases due to the increase in interference in the
corresponding RAT. The optimum association bias and hence
the optimal traffic offload fraction can be found by using a
linear search in the derived expressions. T

For the presented setting, the optimum traffic offload frac-
tion for different deployment densities is given in Table I.
As can be observed, the optimum traffic offload fraction for
the second RAT increases with increasing deployment density
of the corresponding APs. This is because with increasing
density, at the same traffic offload fraction, the load per AP
decreases, increasing the affinity of users for the corresponding
RAT.

V. CONCLUSION

In this paper we presented a tractable model to derive the
rate distribution of a typical user in a M -RAT K-tier heteroge-

TABLE I
OPTIMUM TRAFFIC OFFLOAD FRACTION

�23 = 5�11 �23 = 7�11 �23 = 10�11

A11 30.5% 29% 24.6%
A23 69.5% 71% 75.4%
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Fig. 4. Effect of association bias for RAT-2 APs on fifth percentile rate.

neous network setting under a flexible association model. It is
shown that in a simplified two-RAT setting – similar to cellular
and WiFi – there exists an optimum percentage of the traffic
that should be offloaded from one RAT to another to maximize
the rate coverage. Insights on inter-tier offload can also be
drawn from the presented work. Future work could include
modifying the proposed model to derive rate distribution in
the presence of joint interference coordination and offloading
in heterogeneous cellular networks.

APPENDIX A

Proof of Lemma 2: As a random user is more likely to
lie in a larger association region then in a smaller association
region, the distribution of the association area of the tagged
AP, C

0

ij , is proportional to its area and can be written as

fC
0
ij

(c) / cfC
ij

(c). (18)

Using the normalization property of the distribution function
and (12), the biased area distribution is

fC
0
ij

(c) =

cfC
ij

(c)

E [Cij ]

=

3.5

3.5

�(3.5)

�ij

Aij

✓
�ij

Aij
c

◆3.5

exp

✓
�3.5

�ij

Aij
c

◆
. (19)

The location of the other users in the association region of the
tagged AP follows the reduced Palm distribution of �u which
is the same as the original distribution since �u is a PPP [13,
Sec. 4.4]. Thus, using properties of a PPP and (19), the PGF
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of the other users associated with the tagged AP is

GN
o,ij

(z) = E
h
exp

⇣
�uC

0

ij(z � 1)

⌘i

=

Z

c>0
exp (�uc(z � 1)) fC

0
ij

(c)dc (20)

= 3.5

4.5

✓
3.5 +

�uAij

�ij
(1� z)

◆�4.5

. (21)

Using the PGF, the probability mass function can be derived
as

P (N
o,ij

= n) =
G(n)

N

o,ij

(0)

n!

=
3.53.5

n!
�(n+ 4.5)
�(3.5)

✓
�
u

A
ij

�
ij

◆
n

⇥
✓
3.5 +

�
u

A
ij

�
ij

◆�(n+4.5)

.

For the second half of the proof, we use the property that the
moments of a Poisson RV, X ⇠ Pois(�) (say), can be written
in terms of Stirling numbers of the second kind, S(n, k), as
E [X

n
] =

Pn
k=0 �

kS(n, k). Now

E
⇥
N

n
o,ij

⇤
= E

h
E
h
N

n
o,ij |C

0

ij

ii
(22)

= E
"

nX

k=0

(�uC
0

ij)
kS(n, k)

#
=

nX

k=1

�

k
uS(n, k)E

h
C

0k
ij

i
.

(23)

Using (19) and the area approximation (10)

E
h
C

0k
ij

i
=

E
⇥
C

k+1
ij

⇤

E [Cij ]
=

(�ij/Aij)
�(k+1)E

⇥
C

k+1
(1)

⇤

(�ij/Aij)
�1E [C(1)]

,

(24)

and thus

E
⇥
N

n
o,ij

⇤
=

nX

k=1

✓
�uAij

�ij

◆k

S(n, k)E
⇥
C

k+1
(1)

⇤
.

APPENDIX B
Proof of Theorem 1: Using (3), the probability that the

rate requirement of a user associated with (i, j) is met is

P(Rij > ⇢ij) = P
✓
Wij

Nij
log(1 + SINRij) > ⇢ij

◆

= P(SINRij > 2

⇢
ij

N
ij

/W
ij � 1) (25)

= EN
ij

[Sij (t(⇢̂ijNij))], (26)

where Sij(⌧ij) , Ey [P{SINRij(y) > ⌧ij}], t(⇢̂ijNij) =

2

⇢
ij

N
ij

/O
ij � 1, and Nij = 1 + No,ij , i.e., the load at the

tagged AP equals the typical user plus the other users. Using
Lemma 2, (26) is simplified as

EN
ij

[Sij (t(Nij))] =

X

n�0

P(No,ij = n)Sij (t(n+ 1)) (27)

=

X

n�0

3.5

3.5

n!

�(n+ 4.5)

�(3.5)

✓
�uAij

�ij

◆n✓
3.5 +

�uAij

�ij

◆�(n+4.5)

⇥ Sij (t(⇢̂ij(n+ 1))) . (28)

The derivation of Sij is delegated to [14] due to space
constraints. The desired result is obtained by using Lemma
1 along with the fact that R =

P
(i,j)2V

AijP(Rij > ⇢ij).
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