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Abstract—Current approaches to the analysis of heterogeneous
cellular networks (HetNets) with random spatial models assume
users to be distributed according to a homogeneous Poisson Point
Process (PPP) independently of the base station (BS) locations. In
reality, however, current deployments are capacity-driven, which
correlates the BS and user locations. In this paper, we develop
tools for the downlink analysis of HetNets with general non-
uniform user distributions by enriching the K-tier PPP HetNet
model. Instead of being PPP distributed, the user locations are
modeled by a Poisson cluster process with the cluster centers
being the BSs. In particular, we provide the first formal analysis
of the downlink coverage probability in terms of a general density
function describing the locations of users around the BSs. All the
results are specialized to a particular case of a Thomas cluster
process, where the locations of the users around BSs are Gaussian
distributed. Our results concretely demonstrate that the coverage
probability decreases with the increasing variance of the user
location distribution, ultimately collapsing to the result for the
PPP user distribution when the variance goes to infinity.

Index Terms—Non-uniform user distribution, coverage proba-
bility, Poisson cluster process, Thomas cluster process, stochastic
geometry.

I. INTRODUCTION

Increasing data traffic over mobile networks has necessitated
the need for increasing cellular network capacity at an un-
precedented rate. Not surprisingly, a key enabler for increasing
network capacity at such a rate is a more aggressive frequency
reuse. This is already underway in the form of capacity-driven
deployment of several types of low-power BSs in the areas
of high user density, such as coffee shops, airport terminals,
and downtowns of large cities [1]. Due to the coexistence
of various types of low-power BSs, collectively called small
cells, with the conventional macrocells, the resulting network
is often termed as a heterogeneous cellular network (HetNet).
As a result of the increasing irregularity of BS locations
in HetNets, random spatial models have become a preferred
choice for the accurate modeling and tractable analysis of these
networks. The first comprehensive model for their analysis
was proposed in [1] where the locations of different classes
of BSs were modeled by independent PPPs and the downlink
analysis was performed at a typical user chosen independently
of the BS locations. While there has been a significant body
of follow-up works since then, quite remarkably, none of them
has focused on developing tools for the more realistic case in
which the user and BS locations are correlated. In this paper,
we fill this gap and provide the first comprehensive downlink
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analysis of HetNets with non-uniform user distributions in
which the BS and user locations may be correlated.

Related work. As noted above, almost all the prior work in
the analysis of HetNets using random spatial models focuses
on the case of uniform user distributions. Please refer to [2]
for a detailed survey. The existing albeit sparse work on the
analysis of non-uniform user distributions can be classified
into two main directions. The first is to characterize the
performance through detailed system-level simulations. As
expected, the general philosophy is to capture the capacity-
centric deployments by assuming higher user densities in the
vicinity of small cell BSs, e.g., see [3]. On similar lines, [4]
has introduced a low complexity PPP simulation approach for
HetNets with correlated user and BS locations. The correlation
coefficient is defined in terms of a “potential function” over
Voronoi cells. The second direction, in which the contributions
are even more sparser, is to use analytic tools from stochastic
geometry to characterize the performance of HetNets with
non-uniform user distributions. One notable contribution in
this direction is the generative model that we proposed in
[5], where non-uniform user distribution is generated from
the homogeneous PPP by thinning the BS field independently,
conditional on the active link from a typical device to its serv-
ing BS. While the resulting model is tractable, it suffers from
two shortcomings: (i) it is restricted to single-tier networks
and extension to HetNet is not straightforward, and (ii) even
for single-tier networks, it does not allow the inclusion of any
general non-uniform distribution of users in the model. Besides
this, some other attempts have been made at including non-
uniform user distributions using simple models, especially in
the context of indoor communications, e.g., see [6]. There is
thus a need for developing mathematical tools for the analysis
of HetNets with non-uniform user distributions. Developing
these tools is the main focus of this paper.

Contributions and outcomes. In this paper, we enrich the K-
tier PPP HetNet model proposed in [1] to allow for correlation
in the BS and user locations. In particular, the user locations
are modeled by a Poisson cluster process [7] with the cluster
centers being the BSs. Using new distance distribution results
for cluster processes that we derived in [8], [9], we derive
exact expression for the coverage probability of a typical
device in this setup as a function of the distribution of its
location with respect to the center of the cluster to which it
belongs. Association probabilities of the typical user with the
BSs belonging to open access tiers along with the BS at its own
cluster center are also derived. The results are then specialized
to the case of a Thomas cluster process in which the users
are Gaussian distributed around BSs. Furthermore, our results



concretely demonstrate that the coverage probability decreases
with the increasing variance of the user location distribution,
ultimately collapsing to the result for the PPP user distribution
when the variance goes to infinity.

II. SYSTEM MODEL

Consider a K-tier heterogeneous cellular network, where
BSs across tiers (or classes) differ in terms of their transmit
powers and deployment densities. For notational simplicity,
define K = {1, 2, . . . ,K} as the indices of the K tiers. The
locations of the ith-tier BSs are modeled by an independent
homogeneous PPP �

(BS)

i

of density �
(BS)

i

> 0. The ith-tier
BSs are assumed to transmit at the same power P

i

. As is
usually the case, we assume that a fraction of ith-tier BSs are
in open access for the user of interest and the rest are in closed
access. The ith-tier open and closed access BSs are modeled
by two independent PPPs �

i

and �

0
i

with densities �
i

and �0
i

,
respectively, where �

(BS)

i

= �

i

[ �

0
i

and �
(BS)

i

= �
i

+ �0
i

.
Unlike prior work that focused almost entirely on the

performance analysis of users that are uniformly distributed in
the network, we focus on the users that are more likely to lie
closer to the BSs, especially the small cells. For concreteness,
we assume that B ✓ K tiers have clusters of users around
their BSs. In particular, given the location of a BS in the ith

tier as x

i

2 �

i

, the users are assumed to be symmetrically,
independently, and identically distributed (i.i.d.) around x

i

.
Union of all such locations of users forms a Poisson cluster
process of users with respect to the BSs in ith tier, denoted
by �

u

i

, with �

i

being the parent point process of �

u

i

. In
other words, points of �

i

serve as cluster centers for �

u

i

. To
maintain generality, we assume that the user location z 2 R2

with respect to its cluster center at x

i

follows a general
distribution with probability density function (PDF) f (i)

(z),
which may not necessarily be the same across tiers. This
allows to capture the fact that depending upon the range of
the BSs, users may be densely distributed in small coverage
regions of certain classes of BSs, such as femtocells, and
more sparsely distributed around certain other classes of BSs,
such as picocells. After deriving all the results in terms of the
general distributions, we will specialize them for a special case
of interest where �u

i

is modeled as a Thomas cluster process in
which the users are scattered according to a symmetric normal
distribution of variance �2

i

around the BS-s of �
i

. In this case,
we have f (i)

(z) =

1

2⇡�

2
i

exp

⇣
�kzk2

2�

2
i

⌘
, z 2 R2 [10].

Without loss of generality, downlink analysis is performed
at a typical user of �u

i

, which is a randomly chosen user from
a randomly chosen cluster of �

u

i

, also termed representative
cluster. Since the PPP-s are stationary, we can transform the
origin to the location of this typical user. Now, given that user
is at origin, let the location of the representative cluster center
is y 2 �

i

. We can exclude this y from �

i

and Slivnyak’s
theorem guarantees that the remaining process �

i

\ {y} has
the same distribution as �

i

[10]. For notational simplicity,
let us form another tier �

0

which consists of only a single
point which is y, i.e., �

0

= {y}. Then, set of indices of all
tiers is enriched to K

1

= {0} [ K = {0, 1, 2, . . . ,K}. The
user can either connect to its own cluster center i.e. the BS

in �

0

, or, to some other BS 2 �

j

with j 2 K. The received
power at the location of the typical user at origin from an BS
at x

k

2 �

k

can be expressed as, P (x

k

) = P
k

h
k

kx
k

k�↵,
where, ↵ is the path loss exponent and h

k

is the random
channel gain. Under Rayleigh fading assumption, h

k

-s are i.i.d.
exponential random variables (RV-s) with h

k

⇠ exp(1). Due
to lack of space, we are delegating the inclusion of shadowing
to the extended version of this paper, which will be done
using displacement theorem on the same lines as done for
downlink cellular analysis under the assumption of uniform
user distribution in the literature, e.g., see [11]. We assume
average power-based cell selection in which a typical user
connects to the BS that provides maximum received power
averaged over fading. Note that since the average power from
an BS at x

j

2 �

j

is P
j

kx
j

k�↵, the set of candidate serving
BSs is the set of closest BSs from each tier j 2 K

1

[11].

III. ASSOCIATION PROBABILITY

This is the first technical section of the paper, where we de-
rive the probability that a typical user is served by a given tier
j 2 K

1

, which is usually termed as the association probability.
We will then derive the distribution of the distance from the
typical user to its serving BS conditioned on the serving BS
being from a particular tier. To begin the discussion, let R

j

be
the RV denoting the distance from the typical user at the origin
to the nearest point of �

j

. Since �

j

(j 2 K) are independent
homogeneous PPP-s, the distribution of R

j

, j 2 K, is [10]

PDF: f
R

j

(r) = 2⇡�
j

exp(�⇡�
j

r2)r, r � 0, (1a)
CCDF: F

R

j

(r) = exp(�⇡�
j

r2), r � 0. (1b)

However, the distribution of R
j

will be different for j = 0

as �

0

contains only a single point with predefined distance
distribution. With user at origin, the distribution of the position
“vector” of the cluster center at x

0

will have the same i.i.d.
distribution as f (i)

(x

0

). Equivalently, the position can be
characterized in terms of polar coordinates (R

0

,⇥
0

) with joint
distribution f

R0,⇥0(r, ✓). The marginal distribution of distance
R

0

can now be computed by integrating over f
R0,⇥0(r, ✓) as

f
R0(r) =

Z
2⇡

0

f
R,⇥

(r, ✓)d✓. (2)

In the special case when �

u

i

is a Thomas cluster process, R
0

is Rayleigh distributed with PDF and CCDF [8], [9]

PDF: f
R0(r) =

r

�2

i

e
�r

2

2�2
i , r � 0, (3a)

CCDF: F
R0(r) = e

�r

2

2�2
i , r � 0. (3b)

To derive association probability, let S
�

j

be the event that a
typical user is served by a BS from the jth tier. Thus, S

�

j

can be defined in terms of its indicator function as 1

S�
j

=

1(arg max

j2K1

P
j

R�↵

j

= j) =
\

k2K1

1

�
R

k

> ¯P
jk

R
j

�
, (4)

where ¯P
jk

=

⇣
P

k

P

j

⌘1/↵

and 1(.) is the indicator function of
the random vector R = [R

0

, R
1

, ..., R
k

]. Note that since the



0

th tier is derived from the ith tier, P
0

⌘ P
i

. The association
probability for each tier is now defined as follows.

Definition 1. Association Probability, A
j

for jth tier, 8j 2 K
1

is defined as the probability that the typical user will be served
by the jth tier. Mathematically, it can be expressed as

A
j

= P(S
�

j

). (5)

The following lemma provides general expression for A
j

.
The proof is provided in Appendix A.

Lemma 1. Association probability of the jth tier is

A
j

=

Z

r>0

Y

k2K1

F
R

k

�
¯P
jk

r
�
f
R

j

(r)dr. (6)

Now we derive the distribution of the distance from the
typical user to its serving BS in �

j

, located at x

j

2 �

j

.
We denote this distance by X

j

= kx
j

k. Conditioned on the
association with the jth tier, this serving distance is simply
the distance to the nearest BS in �

j

. Hence X
j

is related to
R

j

as X
j

= R
j

|S
�

j

. The PDF of X
j

is derived in the next
Lemma. The proof is provided in Appendix B.

Lemma 2. The PDF of X
j

, i.e. the distance between a typical
user and its serving BS in jth tier is given by

fX
j

(x) =
1

A
j

Y

k2K1\{j}

F
R

k

(

¯P
jk

x)f
R

j

(x). (7)

With the general distance distribution derived above, let us
now specialize it for the case when �

u

i

is a Thomas cluster
process. For a cleaner exposition, we will enrich the notation
to include j = 0 in the following Corollary. The proof is
provided in Appendix C.

Corollary 1. If �

u

i

is Thomas cluster process, the serving
distance distribution from jth tier BS, j 2 K

1

, is

fX
j

(x) =
2⇡�

j

A
j

exp

 
�⇡

KX

k=0

�
k

(

¯P
jk

x)2

!
x, (8)

where A
j

is the association probability with the jth tier
derived for the general case in Lemma 1. For the Thomas
cluster process, it reduces to

A
j

=

�
j

KP
k=0

¯P 2

jk

�
k

, 8j 2 K
1

, (9)

where �
0

is defined as �
0

=

1

2⇡�

2
i

.

IV. COVERAGE PROBABILITY ANALYSIS

This is the second technical section of the paper where we
use the association probability and the distance distribution
results derived in the previous section to derive easy-to-use
expressions for the coverage probability of a typical user of
�

u

i

. From the above discussion, it is easy to deduce that if
the typical user is served by a BS 2 �

j

located at a distance
kx

j

k = X
j

from the typical user, there exists no kth tier

BSs, 8k 2 K
1

, within a disc of radius, x
jk

=

¯P
jk

x centered
at the user, where x is an instance of RV X

j

. We denote this
disc by b(0, x

jk

). Assuming association with jth tier, the total
interference experienced by the typical user originates from
two independent sets of BSs: (i) [

k2K1�k

\ x

j

, the set of
open access BSs excluding the serving BS and (ii) [

k2K�
0
k

,
the set of closed access BSs. As all the interferers from the
kth open access tier will lie outside b(0, x

jk

), we define
interference from kth open-access tier as, I

o(j,k)

(kx
j

k) =P
x

k

2�

k

\x
j

P
k

h
k

kx
k

k�↵

=

P
x

k

2�

k

\b(0,x
jk

)

P
k

h
k

kx
k

k�↵.
The contribution of interference from all open access tiers is:

I
o(j)

(kx
j

k) =
KX

k=0

I
o(j,k)

(kx
j

k). (10)

While it is clear that the interference from the open-access
tiers defined above depends on the serving distance kx

j

k, it
is not the case with the closed access tiers. Recall that since
the closed access tiers do not participate in the cell selection
procedure, there is no exclusion zone in their interference
field. In particular, the closed access BSs may lie closer to
the typical user than its serving BS. We denote the closed
access interference by I

c

=

P
K

m=1

I
cm

, where I
cm

is the
interference from all the BSs of the mth closed access tier
�

0
m

. Using the notation defined above, we can now define
signal-to-interference-ratio (SIR) at the typical receiver when
it is served by the BS located at a distance kx

j

k as

SIR(kx
j

k) = P
j

h
j

kx
j

k�↵

KP
k=0

I
o(j)

(kx
j

k) + I
c

. (11)

Now, we introduce the notion of coverage by tier j as
the event, SIR(X

j

) > ⌧ , where ⌧ denotes modulation-coding
specific SIR threshold required for successful reception. Thus
the coverage probability can be formally defined as follows.

Definition 2 (Per-tier coverage probability). Define the per-
tier coverage probability as the probability that the typical
user of �

u

i

is in coverage conditioned on the fact that it is
served by a jth tier BS. Mathematically,

Pc
j

= P(SIR(kx
j

k)) > ⌧ |S
�

j

) = P(SIR(X
j

) > ⌧)

=

Z

x>0

P(SIR(x) > ⌧)fX
j

(x)dx. (12)

The overall coverage probability can now be defined in
terms of the per-tier coverage probability as:

Pc =
X

j2K1

P(S
�

j

)P(SIR
j

(x) > ⌧ |S
�

j

) =

X

j2K1

A
j

Pc
j

. (13)

Recall that the association probability A
j

has already been
derived in Lemma 1. We now focus on the derivation of per-
tier coverage probability Pc

j

. Note that using the Rayleigh
fading assumption along with the fact that the open access
interference terms {I

o(j,k)

} and the closed access interference
terms {I

cm

} are all independent of each other, we can express
the per-tier coverage probability in terms of the product of
Laplace transforms of these interference terms. The result is
given in the next Theorem. Since this follows from standard
arguments, e.g., see [1], [12], we are skipping the proof due to



space constraints. Instead, we will focus on the proofs of the
Laplace transforms of interference, which are unique to this
work due to the non-uniform user distribution assumption.

Theorem 1. (Per-tier coverage probability) Coverage proba-
bility of the typical user from �

u

i

conditional on the serving
BS being from the jth tier is Pc

j

=

Z

x>0

KY

k=0

LI
o(j,k)

⇣
⌧x

↵

P

i

⌘ KY

m=1

LI
cm

⇣
⌧x

↵

P

i

⌘
fX

j

(x)dx, (14)

where LI
o(j,k)

(s) = E
⇥
exp(�sI

o(j,k)

)

⇤
, and LI

cm

(s) =

E [exp(�sI
cm

)] respectively denote the Laplace transforms
of open and closed access terms.

The following three Lemmas deal with the Laplace trans-
forms of the different components of interference. We first
focus on the interference originating from all the open access
tiers except the 0

th tier that will need a separate treatment.

Lemma 3. Given a typical user of �u

i

is served by a BS 2 �

j

,
Laplace transform of I

o(j,k)

, 8k 2 K, evaluated at ⌧x

↵

P

j

is

LI
o(j,k)

✓
⌧x↵

P
j

◆
= exp

✓
�⇡ ¯P 2

jk

�
k

Gx2

◆
, (15)

where G =

2⌧

↵�2

2

F
1

⇥
1, 1� 2

↵

; 2� 2

↵

,�⌧
⇤

and
2

F
1

is the
Gaussian Hypergeometric function.

Proof: Please refer to Appendix D for the proof.
After dealing with the interference from all open access

tiers, except the 0

th tier, we now focus on the 0

th tier, which
consists of only the cluster center. Recall that since the 0

th tier
is created from �

i

(tier in which the typical user is located),
the channel fading gain h

0

, transmit power P
0

and exclusion
regions will be the same as those of �

i

.

Lemma 4. Given a typical user of �u

i

connects to the BS 2 �

j

with j 2 K, Laplace transform of I
o(j,0)

can be expressed as,

LI
o(j,0)

(s) =

Z 1

x

ji

1

1 + sP
i

r�↵

f
R0(r)

F
R0(xji

)

dr. (16)

Proof: Due to the formation of virtual exclusion zone
around the typical user, the cluster center, acting as an inter-
ferer, will lie outside b(0, x

j0

). Thus the distribution of its
distance from the typical user, f

R0 , will be conditioned on
R

0

> x
j0

= x
ji

. The conditional PDF of R
0

is f
R0(x|R0

>

y) =
f

R0 (x)

F

R0 (y)
, x � y. Hence, the Laplace transform is

LI
o(j,0)

(s) = E
⇥
exp

�
�sP

i

h
i

kx
i

k�↵

�
|X

j

⇤

(a)
= E

R0


1

1 + sP
i

R
0

�↵

|R
0

> x
ji

�

=

Z 1

x

ji

1

1 + sP
i

r�↵

f
R0(r|R0

> x
ji

)dr,

where (a) follows from h
i

⇠ exp(1), and the result follows
by the conditional PDF of R

0

stated above.

Lemma 5. Given the typical user of �u

i

connects to any BS
2 �

j

, 8j 2 K
1

, Laplace transform of I
cm

is

LI
cm

✓
⌧x↵

P
j

◆
= exp

�
�⇡�0

m

H(

¯P
jm

x)2
�
, (17)

where H = ⌧2/↵
2⇡ csc(

2⇡
↵

)

↵

.

Proof: The proof follows on the same lines as that of
Lemma 3, with the only difference being the fact that I

cm

is
independent of X

j

and hence, the lower limit of the integral
will be zero. Thus, we will obtain,

LI
cm

= exp

✓
�2⇡�0

m

1R

0

⇣
1� 1

1+sP

m

r

�↵

⌘
rdr

◆
(18)

The final form can be obtained by some algebraic manipula-
tions as shown in [1, Appendix B].

The expressions of Laplace transforms of different compo-
nents of interference derived in the above three Lemmas can
now be substituted in Eq. 14 to get the coverage probability
expression for the general case in terms of the general distance
distribution f

R0(·). For the case of Thomas cluster process, the
specialized result is much simpler and is given below.

Corollary 2. If �u

i

is a Thomas cluster process, the per-tier
coverage probabilities of a typical user of �u

i

are

Pc
0

=

�
0

A
0

KP
k=1

(�
0

+ (G+ 1)�
k

+H�0
k

)

¯P 2

ik

(19)

Pc
j

=

2⇡�
j

A
j

Z

x>0

1Z

x

ji

1

�2

i

exp(� r

2

2�

2
i

)

1 + ⌧
⇣

r

x

ji

⌘�↵

r dr

⇥ exp

"
�

KX

k=1

⇡ ((G+ 1)�
k

+H�0
k

) (

¯P
jk

x)2

#
xdx.

(20)

Proof: When the user connects to its own cluster center,
the interference components are I

cm

and I
o(0,k)

, 8k 2 K.
Thus, in Eq. 14, substituting LI

cm

by Eq. 17 and LI
o(0,k)

by
Eq. 16 we obtain Pc

0

as above. Here, we put fX0 from Eq. 8.
For coverage by the jth tier (j 2 K), the interference

components are I
cm

, I
o(j,k)

and I
o(j,0)

, 8k 2 K
1

. The
corresponding terms in Eq. 14 are substituted from Eq. 17,
Eq. 15 and 16 respectively. The PDF and CCDF of R

0

for
Thomas cluster process is given by Eqs. 3a and 3b.

The total coverage probability can now be derived by
combining the above result with the association probabilities
derived for the Thomas cluster process model in Corollary 1.

We now contrast our model with the classical PPP assump-
tion of users. While we do not have space to go over the
proofs, it can be shown from the total coverage probability
result that (i) Pc decreases as the clusters become sparser (i.e.,
�2

i

increases) and (ii) in the limit that �2

i

! 1, Pc corre-
sponding to users being modeled as Thomas cluster process
monotonically converges to the expressions for uniform PPP of
users. As variance of user distribution increases, Pc

0

vanishes
and Pc

j

(j 2 K) tends to the form obtained for PPP of users.
This fact is stated formally in the following remark.

Remark 1. Pc is a monotonically decreasing function of
�2

i

. Further, the following limit can be established for Pc,
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Fig. 1. Coverage probability for non-uniform user distribution model when
the user locations are sampled from a Thomas cluster process. The baseline
uniform case when the user distribution is a PPP is also included.
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which is the same result derived for the users modeled as a
PPP in a K-tier HetNet in [12]. From Eq. 19, it is pretty
straightforward to show that lim
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!1 Pc
0

= 0. For the other
Pc

j

(j 6= 0), the detailed proof is omitted due to the space
limitation. But the most crucial part of the proof is the fact that
the inner integral in the Pc
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term given by Eq. 20 converges

to a limit, i.e.,
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V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we validate our key analytical results and
provide insights into the network performance under non-
uniform user distribution models. Before presenting the results,
we briefly delineate the simulation procedure. For concrete-
ness, we restrict our simulation to two tiers: one macrocell
tier with density �

1

with all open access BSs, and one small
cell tier with a mix of open and closed access BSs. For the
second tier, the open and closed access BS densities are �

2

and �0
2

, respectively. We choose �
2

= �0
2

= 100�
1

= 100

BSs per ⇡(500)2 m2. The transmit powers are assumed to be
P
1

= 10

3P
2

. Within a large spatial window of ⇡(4000)2 m2,
independent PPPs with corresponding densities are generated.
For every realization, a BS in the ith tier is randomly selected
and the location of a typical user is generated according
to the density function of Thomas cluster process stated in
Eq. 3a. In Fig. 1, the coverage probability is plotted for
different values of SIR threshold ⌧ and cluster variance �

2

.
First, it is evident that the analytically obtained curves exactly
match the curves obtained by simulation. For comparison, the
coverage probability assuming homogeneity of users (i.e., PPP
assumption) is also plotted. The plots clearly indicate that the
coverage probability is significantly higher in the the non-
uniform case compared to that in the PPP case. As expected,
the coverage in the non-uniform case converges to that in the
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Fig. 2. Association probabilities when �u
i is a Thomas cluster process.

PPP case as �
2

increases. With decrease in �
2

, users inside the
clusters are more likely to be served by the BS at their cluster
centers. This is also evident from the plots of association
probabilities as functions of �

2

in Fig. 2, which clearly show
that a user is more likely to be served by its cluster center if
the distribution is more “dense” around the cluster center.

VI. CONCLUSION

While the random spatial models have been used success-
fully to study various aspects of HetNets in the past few years,
quite remarkably all these works assume the BS and user
distributions to be independent. In particular, the analysis is
usually performed for a typical user whose location is sampled
independently of the BS locations. This is clearly not the
case in current capacity-driven deployments where the BSs are
deployed in the areas of high user density. This paper presented
the first comprehensive analysis of a HetNet where user and
BS locations are correlated. In particular, modeling the user
locations as a general Poisson cluster process, with BSs being
the cluster centers, we have developed new tools leading to
tractable results for the downlink coverage probability of a
typical user. We have also specialized the results for the case
of Thomas cluster process in which the users are Gaussian
distributed around BSs. We have also shown that the coverage
probability decreases when the clusters become sparser in the
Thomas cluster process, ultimately reducing in the limiting
case to the coverage derived for the PPP user distribution.

This work opens up a new dimension in the HetNet analysis
by providing tools for the analysis of non-uniform user dis-
tributions. While there are numerous extensions of this work,
immediate followup works could include analyses of downlink
rate coverage, biased cell selection and load balancing.

APPENDIX

A. Proof of Lemma 1

By definition of A
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in Eq. 5, we have
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where (a) comes from the fact that �
i

-s are independent, hence
are R

i

-s and (b) is directly from the definition of CCDF.

B. Proof of Lemma 2

Let us first derive the CCDF of X
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below.
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Hence, the distribution of X
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is obtained by
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C. Proof of Corollary 1

When j = 0, putting f
R0 for Thomas cluster process from

Eq. 3a and F
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from Eq. 1b in Eq. 6 we have, A
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Putting �
0

=

1
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as defined, we get the desired result. Now,
for j 2 K, we substitute F

R0 from Eq. 1b and f
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from
Eq. 1a, hence, we have, A
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Solving the integrals, we find closed form expressions for A
j

.
The distribution of serving distance when the user is served
by its own cluster center is given by putting j = 0 in Eq. 7:
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where (a) is obtained by substituting f
R0 from Eq.3a and
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from Eq. 1b. Similarly, for j 2 K, substituting A
j

from
Corollary 1, f
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from Eq. 1a, F
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for k 2 K from Eq. 1b
and F

R0 from Eq. 3b, we get,
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The final expressions follow from simple rearrangements.

D. Proof of Lemma 3

By definition, the Laplace transform of interference is
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where (a) is due to the i.i.d. assumption of h
k

, (b) follows
from h

k

⇠ exp(1), (c) follows from probability generating
functional of homogeneous PPP [10]. Putting s =

⌧x

↵

P

j

and
after few algebraic manipulations similar to Appendix B of
[12], we obtain the desired result.
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