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Abstract—In this paper, we study the coverage probability of
a K-tier multiple-input multiple-output heterogeneous cellular
network (MIMO HetNet) assuming (i) zero-forcing precoding at
all the base stations (BSs), (ii) Rayleigh fading, (iii) independent
Poisson Point Process (PPP) model for the locations of BSs of
each tier, and (iv) general cell selection rule that maximizes
average received signal-to-interference-plus-noise ratio (SINR) at
the users. Our analysis highlights key differences between MIMO
HetNets and the more familiar single antenna HetNets in terms of
cell selection. While it is challenging to derive exact cell selection
rule to maximize average downlink SINR in MIMO HetNets, we
show that adding an appropriately chosen per-tier selection bias
yields a close approximation. The bias value for each tier is given
in closed form. One interpretation of this result is that MIMO
HetNets may balance load more naturally across different tiers in
certain special cases compared to single antenna HetNets where
an artificial selection bias is often needed for load balancing.

Index Terms—Heterogeneous cellular network, MIMO,
stochastic geometry, cell selection bias, load balancing.

I. INTRODUCTION

Addition of various types of low power BSs, collec-
tively termed as small cells, is continuously increasing the
heterogeneity and irregularity of current cellular networks.
With conventional cellular models, such as deterministic grid
and Wyner model, becoming increasingly inaccurate, random
spatial models have emerged as a promising new direction
to model and analyze HetNets. In particular, modeling a
cellular network as a superposition of independent PPPs,
each modeling a particular BS type, such as macro, micro,
pico and femtocells, lends tractability and provides easy-to-
use expressions for key performance metrics. This baseline
model was introduced in [1], [2] and extended in [3]–[6]
to study various aspects of HetNets. Please refer to [7] for
a detailed survey. It is worth noting that most of the prior
art in this line of work assumes single-input single-output
(SISO) transmission. This is clearly an over-simplification of
reality, where the coexistence of multi-antenna transmission
and HetNets is almost inevitable.

Although the multi-antenna transmission techniques are
well understood in isolation [8], their interplay with HetNets
is an active area of research. Extending the PPP-based HetNet
model of [2] to MIMO HetNets, an upper bound on coverage
probability was derived in [9]. Tools from stochastic orders
were used to order the performance of various multi-antenna
transmission techniques for MIMO HetNets in [10]. On the
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other hand, a hybrid MIMO HetNet model, which considers
a fixed size “typical” cell was studied in [11]. Despite these
efforts, the fundamentals of cell selection in MIMO HetNets,
especially when different BSs adopt different multi-antenna
transmission techniques and serve different number of users,
are relatively unexplored. Our main focus is to initiate a
systematic study towards understanding these fundamentals.

On the same lines as [9], [10], we assume K different
types of BSs, which may differ in terms of transmit power,
deployment density, number of transmit antennas, transmission
scheme, and number of users served. However, unlike [9],
[10], where cell selection was implicitly based on maximum
instantaneous signal-to-interference ratio (SIR), in this paper
we focus on maximum average SINR-based cell selection. The
key contributions are summarized below.

Cell selection: We show that the cell selection rules in
MIMO HetNets are fundamentally different from those of
SISO HetNets. For instance, in SISO HetNets, the BS that
maximizes the downlink received power is also the one that
maximizes the downlink SINR. However, this is not neces-
sarily the case in MIMO HetNets due to precoding gain.
We focus on maximum average received SINR-based cell
selection and show that a simpler selection rule based on
adding an appropriately chosen per-tier selection bias in the
received power yields a surprisingly close approximation. We
also derive this approximate per-tier selection bias in closed
form. One key observation is that the bias value only depends
upon the number of antennas at the BS and the number of
users served in each resource block, which makes it easier to
implement it in practice. Due to this connection with selection
bias, MIMO HetNets have a more balanced load across tiers
in certain regimes compared to SISO HetNets. To the best of
our knowledge, this is the first systematic study that explores
connections between cell selection and load balancing (across
tiers) in the context of downlink MIMO HetNets.

Coverage probability: Assuming a general cell selection
bias for each tier, an exact expression for coverage probability
is also derived. After validating the expression through exten-
sive system simulations, we use it to compare the performance
of various transmission schemes in MIMO HetNets.

II. SYSTEM MODEL

We consider a HetNet consisting of BSs of different classes,
which may differ in terms of transmit power P

k

(to each
user), deployment density �

k

, number of transmit antennas
M

k

, transmission scheme, and number of users served in each
resource block  

k

. We assume that there are K different



classes or tiers of BSs indexed by the set K = {1, 2, . . .K}.
The locations of each tier are sampled from an independent
homogeneous PPP �

k

of density �

k

which has been justified
both by empirical evidence [12] and theoretical validation [13].
The overall point process consisting of all BSs’ locations is
represented by the superposition of K PPPs as � = [

k2K�k

.
A particular realization of � will be denoted by �. The users
are assumed to form an independent PPP �

u

of density �

u

.
Each user is assumed to have a single receive antenna. The
analysis is performed at a typical user located at the origin.

In this paper, we will restrict our attention to zero-forcing
precoding, which is general enough to encompass important
transmission schemes such as beamforming and spatial divi-
sion multiple access (SDMA), while being tractable enough
to provide important system design guidelines. Note that due
to precoding at the BS, the effective channel gain to a given
receiver depends upon whether that BS acts as a serving BS or
an interferer for that receiver. For example, if a multi-antenna
transmitter beamforms to a given user, the effective channel
gain would be much higher than when it simply acts as an
interferer. Therefore, we denote the effective channel power
gain from a k

th tier BS located at x

k

2 �

k

to a typical
user by h

x

k

k

when it acts as a serving BS, and by g

x

k

k

when it acts as an interferer. We also assume perfect channel
state information (CSI) at the transmitter, although as argued
in [10] the tools developed in this paper can also be used
to incorporate the effects of imperfect CSI. For zero-forcing
precoding with perfect CSI under Rayleigh fading, we can
approximate h

x

k

k

⇠ �(�

k

, 1) and g

x

k

k

⇠ �( 

k

, 1), where
�

i

= M

i

� 
i

+ 1 as discussed in [10]. The received power
at a typical user from a serving BS located at x

k

2 �
k

is

P (x

k

) = P

k

h

x

k

k

kx
k

k�↵

, (1)

where kx
k

k�↵ is a standard power-law path-loss with expo-
nent ↵ and P

k

is the transmit power of the k

th tier BS. The
resulting SINR �

k

(x

k

) is

�

k

(x

k

) =

P

k

h

x

k

k

kx
k

k�↵

I +N

, (2)

where N is the noise power, and I is the interference power
given by

I =

X

j2K
I

j

=

X

j2K

X

x2�\x
k

P

j

g

xj

kxk�↵

. (3)

For brevity, we will assume the interference limited network
where noise power N = 0. For cleaner exposition in the next
section, let us denote the average received power from a k

th

tier BS by P

rk

(x

k

) given as

P

rk

(x

k

) = P

k

�

k

kx
k

k�↵

. (4)

We now study the fundamentals of cell selection for MIMO
HetNets in the next section.

III. CELL SELECTION IN MIMO HETNETS

Recall that a usual cell selection criterion in SISO HetNets
is to select the BS that provides the maximum average received
power, possibly with a certain bias value for load balancing.

In the case when there is no bias, this cell selection criterion
is also the one that maximizes SINR. Therefore, to maximize
coverage probability, a typical user simply connects to the BS
that provides the highest received power, as discussed in [3].
However, it is easy to construct a simple toy example showing
that this is not the case in MIMO HetNets.

Example 1. Consider two BSs at the same distance from a
typical user, one having 4 antennas serving a single user,
which with a slight overloading of the notation implies M1 =

4, 1 = 1,�1 = 4, and the other serving 4 users with 6

antennas, i.e., M2 = 6, 2 = 4,�2 = 3. Since �1 > �2, a
typical user should connect to the first BS to maximize average
received power. However, since  2 >  1, the interference
from second BS is larger than the first and it should connect
to second to minimize the received interference power. Further,
since �2

 1
>

�1
 2

, it should connect to the second BS to
maximize its received SINR.

We first discuss cell selection with the goal of maximizing
the average received SINR conditional on the point process
�. Note that to maximize both the average received power
and average SINR, it is strictly suboptimal for a typical user
to connect to any BS except the ones that are closest to it in
each tier, i.e., a typical user should only connect to one of BSs
from the set S = {x

i

, i 2 K : x

i

is the closest BS of tier i}.
Let �

k

be the instantaneous SINR when a typical user connects
to the closest kth tier BS. Under maximum average SINR cell
selection rule, kth tier is selected if

k = argmax

j2K
E[�

j

|� = �], (5)

where the selection rule clearly depends upon the distances
of the BSs to a typical mobile due to conditioning on the
realization of the point process �. Since it is quite challenging
to derive an exact selection rule from (5), we will present an
approximate but simple and practical cell selection rule that
works across wide range of system parameters using Jensen’s
inequality.

In a given realization � of point process �, let us assume
that there are two possible candidate serving BSs: kth tier BS
located at x

k

and j

th tier BS located at x

j

. Let W denote
the residual interference from other BSs and a

i

= P

i

kx
i

k�↵.
Given this realization, the average SINR is given by

E[�
k

(x

k

)|�] = E


h

x

k

k

a

k

g

x

j

j

a

j

+W

|�
�

= a

k

�

k

E


1

g

x

j

j

a

j

+W

|�
�

� a

k

�

k

1

E[g
x

j

j

a

j

+W |�] =
a

k

�

k

 

j

a

j

+ E[W |�] .

Using this lower bound, the conditions required for selection
of x

k

over x
j

are

P

k

�

k

kx
k

k�↵ � P

i

�

i

kx
i

k�↵

i 8i 6= k (6)
P

k

 

k

kx
k

k�↵ � P

i

 

i

kx
i

k�↵

i 8i 6= k, (7)

which need to be satisfied simultaneously. The following ex-
ample demonstrates that this is not always possible, i.e., none
of the tiers may satisfy both these conditions simultaneously.



Example 2. Consider a two tier network such that the distance
of the typical user to the nearest BS in each tier is the same,
i.e., x1 = x2. Further assume that the transmit powers for the
two tiers are also the same. Fixing �1 = 2,�2 = 1, 1 =

2, 2 = 3, it is easy to check that neither k = 1 nor k = 2

satisfy (6) and (7) simultaneously.

To construct a condition which guarantees a solution, we
multiply the two inequalities to get a simpler but more useful
sufficient condition for the selection of kth tier

P

k

p
�

k

 

k

kx
k

k�↵ � P

i

p
�

i

 

i

kx
i

k�↵ 8i 6= k. (8)

It is easy to verify that there always exists a k 2 K for which
the selection law (8) holds and is equal to the solution of (6)
and (7) if the solution of the latter pair exists. The following
remark presents an interesting connection between this cell
selection criterion and idea of cell selection bias.

Remark 1 (Connections with biasing). We can rewrite (8) as
r
 

k

�

k

P

rk

(x

k

) �
r
 

i

�

i

P

ri

(x

i

) 8i 6= k, (9)

where P

rk

(x

k

) = P

k

�

k

x

�↵

k

is the average received power
from a k

th tier BS located at x
k

2 �
k

. Here B

k

=

q
 

k

�
k

can
be perceived as a “bias”. For SISO case,  

k

= �

k

= 1 8k 2
K, and the above rule reduces to selecting the BS providing
highest received power, which is also the SINR maximizing
rule for the SISO case.

Similar to (8), other candidate laws can also be derived by
different way of combining, e.g., by adding the inequalities
(6) and (7), which gives:

P

k

(�

k

+ 

k

)x

�↵

k

� P

i

(�

i

+ 

i

)x

�↵

i

8i 6= k, (10)

which can also be interpreted as a selection bias with B

k

= 1+

 
k

�
k

in the context of Remark 1. We evaluate the approximation
error for these cell-selection laws in numerical result section
and show that the selection bias of B

k

=

q
 

k

�
k

is surprisingly
accurate for SINR, and hence coverage, maximization. Note,
however, that this choice of selection bias is not necessarily
optimal for other metrics, e.g., rate coverage. Therefore, to
maintain generality, we derive all the results in terms of a
general cell-selection bias term B

k

, i.e., a user selects a nearest
BS of kth tier if

k = argmax

j2K
B

j

P

j

�

j

kx
j

k�↵ (11)

or in other words, a typical user selects a BS that provides the
maximum biased received power, where the bias values are
tuned according to the metric that is being maximized which
results in exclusion regions around a typical user and all the
interfering BSs lie outside of this region. This exclusion region
is formally defined in the following lemma.

Lemma 1. A k

th tier BS situated at distance R

k

from the
typical user located at the origin is selected if the distance of
the typical user from all the other BSs, R

j

, j 6= k, satisfies the
following condition

R

j

�
⇣
b
P

j

b
B

j

b
�

j

⌘ 1
↵

R

k

, (12)

MIMO (max Rx power)

1st tier BS
2nd tier BS

MIMO(optimal bias)

SISO (max Rx power)

Fig. 1. The expansion of coverage regions due to inherent biasing in two tier
MIMO HetNet with  = [1, 6], P = [30, 1],� = [1, 3]. In this hypothetical
case, small cells (denoted by filled circle) use 8 antennas and schedule 3 users
per resource block. Macrocell BSs (denoted by diamonds) have single antenna
per BS. Here, optimal bias refers to the bias that maximizes the mean SINR.

where bP
j

= P

j

/P

k

. The bB
j

and b�
j

are defined similarly.

As discussed earlier in [2] for SISO HetNets, the association
regions thus formed are weighted Voronoi regions. However,
unlike SISO HetNets, the weights are not just equal to the
received power but also include a bias term which accounts
for minimizing the interference. We compare the association
regions for SISO and MIMO HetNets for a fixed realization of
the BS point process in Fig. 1 for two different cell selection
rules: i) based on maximum received power, ii) based on
maximum average SINR. For a SISO HetNet, both these
selection rules are exactly the same. For a MIMO HetNet, the
second selection rule may expand or shrink the association
region compared to a SISO HetNet and hence may help in
balancing load across tiers.

Before concluding this section, we state the cell selection
(association) probability result, i.e., the probability with which
a typical user selects a k

th tier BS, which will be useful in
the coverage probability analysis in the next section. Using [3,
Lemma 1], the cell selection probability is

A

k

=

�

k

P
j

�

j

⇣
b
P

j

b
�

j

b
B

j

⌘ 2
↵

. (13)

IV. COVERAGE PROBABILITY

A typical user is said to be in coverage if its serving
BS provides downlink SINR above a certain coding and
modulation specific threshold T . It is formally defined as

P

c

=

KX

k=1

P[�
k

> T, k = associated tier]. (14)

For the mean SINR association model, the coverage probabil-
ity is given as

P

c

=

KX

k=1

E�
k

h
(�(x

k

)>T ) (S
x

k

,�

�S

x,�

8x2�\x
k

)

i
(15)



where �

k

and E[�
k

|�] are instantaneous SINR and conditional
mean SINR given realization � and S

x,�

= E[�(x)|�].
For the selection rule (12), the latter term (association

indicator) can be expressed as

e

k
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k

,�\x
k

) =

✓
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i

k � (

b
P

j

b
�

j

b
B

j

)

1
↵ kx

k

k 8x
i

2 �\x
k

◆

and the probability of coverage can be computed as

P

c

(a)
=

KX

k=1

�

k

Z 1

0
P
✓
P

k

h

x

kxk↵ > T (I�)|ek(x,�)
◆
·

P
✓
kx

i

k � (

b
P

j

b
�

j

b
B

j

)

1
↵ kxk 8x

i

2 �
◆
dx

(b)
= 2⇡

KX

k=1

�

k

Z 1

0
P
�
P

k

h

x

kxk�↵

> T (I�0
)

�
·

e

�
P

K

j=1 �

j

⇡( bP
j

b�
j

b
B

j

)
2
↵

x

2

xdx, (16)

where �
0

is given as �
0
= [K

k=1�k

\ B(0, ( bP
j

b
�

j

b
B

j

)

1
↵ kxk)

c

where B(0, r) is open ball around origin with radius r and (.)

c

denotes the set complement and signifies that all the interfering
BSs are outside this ball. Here (a) is from conditional proba-
bility and (b) is due to property of a Poisson point process.

The probability term inside the integral in (16) represents
CCDF of the SINR at typical user associated with the k

th tier
BS situated at a distance x

k

= x. It can be expressed as

P[�
k

(x) > T ] = P[P
k

h

k

x

�↵

> T (I)] = P[h
k

> TP

�1
k

x

↵

(I)]

=

�
k

�1X
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1

n!

E
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(�s(I))

n
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�s(I)
i

=

�
k

�1X

n=0

1

n!

(�s)

i

d

n

ds

n

⇣
E
h
e

�s(I)
i⌘

(17)

with s = TP

�1
k

x

↵.
To simplify (17) further, we will not only need the Laplace

transform (LT) of interference but also the derivatives of LT.

A. Laplace transform of Interference
Lemma 2. The Laplace transform of interference from all the
BSs at a typical user served by a k

th tier BS located at a
distance x from the typical user is given by

L
I

(s) = exp

2

4�2⇡

KX

j=1

�
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↵

(sP
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2
↵
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1
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3

5
,

(18)

where B

0
(a, b, c) is the complementary incomplete Beta func-

tion defined as

B

0
(a, b, z) =

Z 1

z

u

a�1
(1� u)

b�1
du.

Proof: Due to limited space, we skip the proof. It follows
mainly from Lemma 4 of [10] along with the tools developed
in [3].

B. Derivatives of the Laplace Transform
The derivative of the LT is given by the following Lemma.

Lemma 3. The n

th derivative of the Laplace transform of
interference is dn

dsnLI

(s) =

L
I

(s)
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Proof: The proof is based on the tools developed in [10].
See Appendix A for a sketch.

For the later use, we give the values of Laplace transform
and its derivative at s = TP

�1
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↵ here:
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C. SINR distribution and Coverage Probability
We can now compute the CCDF of SINR using the results

of previous subsections and equation (17).

Theorem 1. The CCDF of SINR at the typical user associated
with the k

th tier BS situated at a distance X

k

= x from the
typical user for the interference limited case is given as
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Finally, we now compute the coverage probability of a
typical user in a MIMO HetNet using (16).

Theorem 2. Coverage probability of a typical user in the
interference limited case is given by P
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P
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Proof: See Appendix B.

V. NUMERICAL RESULTS

In this section we present numerical results to validate our
analysis and provide key system design insights. For simula-
tions, K independent Poisson point processes are generated
over a large spatial window and selection of a BS and tier
is done according to (11). The fading link from serving BS
to a user is modeled as random variable h

ix

⇠ �(�

i

, 1)

and the interfering links are modeled as g

jx

⇠ �( 
j

, 1). For
brevity, we consider an interference limited two tier HetNet
with macrocells forming the first tier and femtocells forming
the second with �1 = 150 and �2 = 300. The following two
multi-antenna techniques are considered for numerical results:
(i) single-user beamforming (SUBF), where each BS serves
single user, i.e., �

i

= M

i

, 

i

= 1, and (ii) full SDMA, where
an i

th tier BS serves M

i

users in each resource block, i.e.,
�

i

= 1, 

i

= M

i

. Combining these techniques with different
system configurations, we define the following 7 simulation
cases to be used in the rest of this section.

• 4-2 antenna configuration system: Macrocells and femto-
cells have 4 and 2 antennas per BS, respectively.

– Case 1. Both tiers use SUBF
– Case 2. Both tiers use SDMA
– Case 3. First tier uses SDMA and the other SUBF
– Case 4. First tier uses SUBF and the other SDMA

• 2-1 antenna configuration system: Macrocells and femto-
cells have 4 and 1 antennas per BS, respectively.

– Case 5. First tier uses SUBF and the other SISO
– Case 6. First tier uses SDMA and the other SISO

• SISO system: Case 7: Both tiers use SISO.

A. Coverage Probability

We present coverage probabilities for a 4-2 configuration
system in Fig. 2 for full SDMA and SUBF cases with ↵ = 4

and compare them with the SISO case. We observe that when
both the tiers perform SUBF, the system achieves the best
coverage probability. This is intuitive because transmission
from the serving BS is improved due to the beamforming
gain while the effective fading power from the interfering
links remains the same as the SISO case. Similarly SDMA
performs worse than SISO because the mean fading power of
interfering links increases and thus causes strong interference
while serving link remains the same as the SISO case. The
intermediate cases where one tier uses SDMA and the other
SUBF lie in-between these two extreme cases.
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Fig. 2. Coverage probability of a two tier HetNet with ↵ = 4,� =
[150, 300], P1 = 5 · P2 = 50 for 4-2 antenna configuration with SUBF
and SDMA techniques. The baseline SISO case is also included. T and S
respectively denote theoretical and simulation results. Bias is

p
 j/�j .
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Fig. 3. Coverage probability versus relative bias B2/B1 in a two tier HetNet
with ↵ = 4,� = [150, 300], P1 = 5 · P2 = 50 for SIR target 0 dB for 4-2
antenna configuration.

B. Optimal Bias

As discussed, unlike SISO, the MIMO HetNet requires a
bias even for coverage maximization which can be optimized.
We plot the variation of the coverage probability versus bias
(B2/B1) in Fig. 3 for target SIR of 0 dB for different cases
of 4-2 antenna configuration. In Fig. 4, we determine the
accuracy of modified bias approximation by comparing the
bias found from different selection-bias candidate functions
and the coverage optimal bias found from simulation for all 7
cases defined earlier in this section. Note that the BS selection
based on the highest mean SINR may not always be an optimal
approach from coverage maximization perspective. However,
from Fig. 4 it is evident that the candidate function (9) is still
a reasonable choice. Further, since it depends solely upon the
number of antennas at the BS and the number of users served
in each resource block, it is easier to implement in practice.
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Fig. 4. Comparison of different candidates functions with numerically
obtained bias to maximize coverage probability for target SIR 0 dB, � =
[150, 300], P1 = 5 · P2 = 50 for all the 7 simulation cases.

VI. CONCLUSION

In this paper, we have presented a framework to model
and analyze the downlink MIMO HetNet with general cell
selection and discussed key differences between MIMO and
SISO HetNets. We derived a simple selection-bias based cell
association criterion that closely approximates the complex
selection rules to maximize mean SINR. For this cell selection
rule, we derived exact expression for coverage probability.
Future work could include computation of rate coverage
and derivation of per-tier bias expression for downlink rate
maximization. Another useful direction is to assume multiple
antennas at the users and study the impact of this additional
degree of freedom on system design, especially in terms of
cell selection and load balancing across tiers.

APPENDIX

A. Proof for Derivatives of the Laplace Transform
The Laplace transform of noise plus interference L

I

(s) can
be written as f(g(s)) where f(x) = exp(x) and

g(s) = 2⇡

KX

j=1

�

j

Z 1

r

j

 
�1 +

1

(1 + sP

j

r

�↵

)

 
j

!
rdr. (21)

Using Faà di Bruno’s lemma, nth derivative can be written
as
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B. Proof for Coverage Probability
The coverage probability, P

c

, can be expressed as
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