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Fundamentals of Base Station Availability in
Cellular Networks with Energy Harvesting

Harpreet S. Dhillon, Ying Li, Pavan Nuggehalli, Zhouyue Pi, and Jeffrey G. Andrews

Abstract—We develop a new tractable model for K-tier cellular
networks, where each base station (BS) is solely powered by a
self-contained energy harvesting module instead of a conventional
power-line source. The BSs across tiers differ in terms of the
energy harvesting rate, energy storage capacity, transmit power
and deployment density. Since a BS may not always have enough
energy, it may need to be kept OFF and allowed to recharge
while its load is served by the neighboring BSs that are ON.
Using tools from random walk theory and stochastic geometry,
we characterize the fraction of time each type of BS can be kept
ON, termed availability, for general uncoordinated strategies,
where each BS toggles its ON/OFF state independently of the
others. As a part of our analysis, we model the temporal dynamics
of the energy level at each BS as a birth-death process, derive
energy utilization rate for each BS class, and use hitting/stopping
time analysis to study availabilities. We prove that there is a
fundamental limit on the availabilities, which cannot be surpassed
by any uncoordinated strategy. As a part of the proof, we
construct the strategy that achieves this limit.

I. INTRODUCTION

Several parallel trends have made the possibility of a self-
powered BS realistic in the near future. First, BSs are rapidly
miniaturizing, and being deployed ever-more densely and
opportunistically [1]. This means they require significantly
less transmit power. Second, due to the increasingly bursty
nature of user traffic, the loads on BSs will experience massive
variation in time and space [2], which means that many
BSs can, in principle, be turned OFF most of the time and
only be requested to wake up intermittently based upon the
traffic demand. Third, energy harvesting techniques, such as
solar power, are rapidly becoming cost-effective, due both to
technological improvements as well as market forces, such
as increasing costs and taxes on conventional power sources,
and subsidies and regulatory pressure for greener techniques.
Fourth, high-speed wireless backhaul is rapidly becoming a
reality for small cells [3]. Therefore, being able to avoid the
constraint of requiring a wired power connection is even more
attractive, since it would open up entire new categories of low-
cost “drop and play” deployments, especially of small cells.

Although there has been significant advancement in the
study of sensor and mobile ad hoc networks with self-powered
transmitters, see, e.g., [4], [5], our understanding of the cellular
networks in a similar setting is severely limited. This is
partly due to the fact that conventional cellular networks
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comprised exclusively of big macro BSs that required fairly
high power and it made little sense to study them in the
context of energy harvesting. Nevertheless, there has been
some recent advancement in the understanding of a point-
to-point communication link with self-powered transmitter,
e.g., [6] studies the optimal rate adaptation to minimize total
packet delivery time by modeling both the packets and the
energy arrivals at the transmitter as random processes, [7]
additionally incorporates the effect of finite energy storage
capacity, and [8] further incorporates the effect of wireless
fading channels. Clearly, the current cellular networks, with
heterogeneous infrastructure and unique characteristics such
as scheduling and cell selection, cannot be studied in the
simple setups discussed above. This motivates the need for a
fundamentally new framework and associated analytical tools
to study self-powered cellular networks, which is the main
focus of this paper.

We consider a general self-powered heterogeneous cellular
network (HCN), where several types of small cells may coexist
with macrocells. Starting with the K-tier HCN model pro-
posed in [9], where BSs across tiers differ in terms of the trans-
mit power and deployment density, we additionally incorporate
differences in the energy harvesting rate and energy storage
capacity. For example, in a future two tier HCN, macrocells
may have a more aggressive energy harvesting module and a
higher energy capacity than small cells. Modeling the locations
of each class of BSs by an independent Poisson Point Process
(PPP), we use tools from stochastic geometry to derive the
energy utilization rate for each BS class. Under the assumption
that the BS operational policies are decided over a much longer
time scale than the one on which cell selection decisions are
taken, we model the temporal dynamics of the energy level
as a birth-death process. Using stopping/hitting time analysis,
we quantify the uncertainty in the availability of each class
of BSs due to finite battery capacity and inherent randomness
in the energy harvesting process. Using this novel analytical
approach, we prove that there is a fundamental limit on the
availabilities, which cannot be surpassed by any uncoordinated
strategy. We also construct an achievable scheme that achieves
this upper limit on availability for each class of BSs.

II. SYSTEM MODEL

We consider a K-tier cellular network consisting of K

different classes of BSs. For notational simplicity, define
K = {1, 2, . . . ,K}. The locations of the BSs of the k

th

tier are modeled by an independent PPP �

k

of density �

k

.
This model was first proposed for HCNs in [9] and has been
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validated since then both by empirical evidence [10] and
theoretical arguments [11]. Each BS is assumed to have an
energy harvesting module and an associated energy storage
module, which is assumed to be its sole source of energy.
The BSs across tiers may differ both in terms of how fast
they harvest energy, i.e., the energy harvesting rate µ

k

units
per unit time, and how much energy they can store, i.e., the
energy storage capacity N

k

units. While the absolute units of
energy are irrelevant, we assume that the normalization is such
that each user requires one unit of energy per unit time. This
assumption can be easily relaxed to incorporate users requiring
more than one unit of energy under sufficient randomization,
but this case is not in the scope of the current work. We further
assume that a k

th tier BS transmits to each user with a fixed
power P

k

. The target signal-to-interference-ratio (SIR) � is
the same for all the tiers.

The energy arrival process at a k

th tier BS is modeled as
a Poisson process with mean µ

k

. This assumption is based
on the fact that most energy harvesting modules contain small
sub-modules harvesting energy independently, e.g., small solar
cells harvesting energy in a solar panel, where the net energy
harvested can be argued to be a Binomial process, which
approaches to the Poisson process in the limit when the num-
ber of sub-modules grow large. Interestingly, this model has
been validated in literature using empirical measurements for a
variety of real world energy harvesting modules, e.g., see [12].
Since the energy arrivals are random and the energy storage
capacities are finite, there is some uncertainty associated with
whether the BS has enough energy to serve users at a particular
time or not. Under such a constraint, it is required that some
of the BSs be kept OFF for the purpose of serving users
and allowed to recharge while their load is handled by the
neighboring BSs that are ON. Therefore, the BS can be in
either of the two operational states: i) ON, or ii) OFF. The
decision to toggle the operational state from one to another
is taken by the operational strategies that can be broadly
categorized into the following two classes.

Uncoordinated: In this class of strategies, the decision to
toggle the state is taken by the BS independently of the
operational states of the other BSs. For example, a BS may
decide to toggle its operational state from ON to OFF if its
current energy level reaches below a certain predefined level
and toggle it back after harvesting enough energy. This class
will be the main focus of this paper.

Coordinated: In this class of strategies, the decision to
toggle the state of a particular BS is dependent upon the states
of the other BSs. For example, the BSs may be partitioned into
small clusters where only a few BSs in each cluster are turned
ON. The decision may be taken by some central entity based
upon the current load requirements.

For tractability, we focus on a time scale that is much longer
than the scheduling block over which scheduling and cell
selection decisions are taken. This allows us to consider the
average effects of cell selection while determining the energy
utilization rates for various classes of BSs as discussed in
the next section. Further, due to uncertainty in the energy
availability, all the BSs in the network may not always be
available to serve users. This is made precise by defining
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Fig. 1. Birth-death process modeling the temporal dynamics of the energy
available at a kth tier BS.

availability of a BS as follows.

Definition 1 (Availability). A BS is said to be available if it
is in the ON state as a part of the operational policy and has
enough energy to serve at least one user, i.e., has at least one
unit of energy. The probability that a BS of tier k is available
is denoted by ⇢

k

, which may be different for different tiers of
BSs due to the differences in the capabilities of the energy
harvesting modules and the load served.

For uncoordinated strategies, it is reasonable to assume that
the current operational state of a BS is independent of all the
other BSs, especially since the energy harvesting processes are
assumed to be independent across the BSs. The coupling in
the transmission of various BSs that arises due to interference
and mobility is ignored. Under this independence assumption,
the set of ON BSs of the k

th tier form a PPP �

0
k

with
density �

k

⇢

k

. This results from the fact that the independent
thinning of a PPP leads to a PPP with appropriately scaled
density [13]. As will be evident from the availability analysis
in the next section, this abstraction is the key that makes this
model tractable and leads to meaningful insights.

In the rest of this section, we introduce the propagation
and cell selection models for which we restrict our attention
to the BSs that are available. For notational ease, we define
�

0
= [

k2K�
0
k

. We assume that a typical user is located at
the origin, which is made possible by Slivnyak’s theorem [9],
[14]. The received power at the typical user from a k

th tier
BS located at x

k

2 �

0
k

is

P (x

k

) = P

k

h

xkkxk

k�↵

, (1)

where h

x

⇠ exp(1) models Rayleigh fading, and kx
k

k�↵

represents standard power-law path loss with exponent ↵,
which is the same for all the tiers. For cell selection, we
assume that each user connects to the BS that provides the
highest long term power, i.e., small scale fading gain h

x

does
not affect cell selection. Therefore, the typical user selects the
BS located at x if

x = argmax

y2�0
P

k

kyk�↵

. (2)

For this general system model, we now study the availabilities
of different classes of BSs in the next section.

III. AVAILABILITY ANALYSIS

The main challenge in studying the model introduced in the
previous section lies in characterizing how the energy available
at the BS changes over time. Without loss of generality, we
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Fig. 2. Coverage regions for a two-tier cellular network. The unavailable
BSs are denoted by hollow circles. The thin lines form coverage regions for
the baseline case assuming all the BSs were available.

index the energy states of a k

th tier BS as 0, 1, . . . , N

k

, and
model the temporal dynamics as a continuous time Markov
chain (CTMC), in particular birth-death process, as shown in
Fig. 1. When the BS is ON, the energy increases according to
the energy harvesting rate and decreases at a rate that depends
upon the number of users served by that BS. When the BS
is OFF, it does not serve any users and hence the birth-death
process reduces to a birth-only process. We now derive the
rate ⌫

k

at which the energy is utilized in closed form below.

A. Modeling Energy Utilization Rate
Before modeling the energy utilization rate, there are two

noteworthy points. First, if a BS is not available, the load
originating from its original area of coverage is directed to the
nearby BSs that are available, thus increasing their effective
load. Equivalently, the coverage areas of the BSs that are
available get expanded to cover for the BSs that are not
available, as shown in Fig. 2. The second one is given in the
following remark.

Remark 1 (Control channel coverage). The control channel
coverage, i.e., the probability that the received SIR is greater
than the target, is independent of the densities of the BSs in an
interference limited network when the target SIR is the same
for all tiers [9], [15]. While this result will be familiar to
those exposed to recent coverage probability analysis using
stochastic geometry [9], [15], this is not required for the
current paper, except the interpretation that the density of
users effectively served by the network is independent of the
effective densities of the BSs and hence independent of {⇢

k

}.

Assuming fixed energy expenditure for control signaling,
only the users that are in control channel coverage will result in
additional energy expenditure at the BS. We denote the density
of such users by �

u

. Each user is assumed to require one unit
of energy per unit time such that the net energy utilization
process at each BS can be modeled as a Poisson process with

mean defined by the average number of users it serves. It
should be noted that the assumption of unit energy usage is
without any loss of generality and is made to simplify the
notation. To find the average number of users served by a BS
of each class, we first need to define its service area which will,
in general, be different for different tiers due to the differences
in the transmit powers as evident from Fig. 2. The service area
can be formally defined as follows.

Definition 2 (Service area). The service area A
k

(x

k

) ⇢ R2

of the k

th-tier BS located at x
k

2 �

0
k

is defined as

A
k

(x

k

) =

(
z 2 R2

: x

k

= arg max

j2K,xj2�0
j

P

j

kx
j

� zk�↵

)
.

To find the average service area of a k

th tier BS, we first
derive the probability that a typical user connects with a BS
of that tier. We denote this by P

k

which is given next.

Lemma 1 (Selection probabilities). For the cell selection
model introduced in the last section, the probability that a
typical user connects to a BS of kth tier is given by

P
k

=

�

k

⇢

k

P

2
↵
k

P
K

j=1 �j

⇢

j

P

2
↵
j

(3)

The proof follows from Lemma 1 of [15] using the fact
that the density of available BSs of k

th tier is ⇢

k

�

k

. The
equivalence of the selection probabilities and the average area
served by a particular tier is given below.

Remark 2 (Average area). Due to the ergodicity of PPP, the
selection probability given by Lemma 1 is equal to the average
fraction of area covered by the corresponding tier.

This leads to the following corollary of Lemma 1 about the
average service area of a BS of the k

th tier.

Corollary 1 (Average service area). The average service area
of a k

th tier BS is given by

E[A
k

] =

P

2
↵
k

P
K

j=1 �j

⇢

j

P

2
↵
j

. (4)

The proof follows from the fact that E[A
k

] = P
k

/�

k

⇢

k

,
where �

k

⇢

k

is the effective density of the k

th tier BSs. Using
this result, the average number of users served by a BS of kth
tier, equivalently the energy utilization rate, is now given by
the next corollary.

Corollary 2 (Energy utilization rate). The energy utilization
rate, i.e., the number of units of energy required per second,
at a BS of kth tier is given by

⌫

k

= �

u

E[A
k

] =

�

u

P

2
↵
k

P
K

j=1 �j

⇢

j

P

2
↵
j

. (5)

It should be noted that the availabilities of various tiers
are still unknown and even if all the system parameters are
given, it is still not possible to determine the energy utilization
rate from the above expression. This will lead to fixed point
expressions in terms of availabilities as discussed in detail
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later in this section. It is also worth mentioning that the energy
utilization rate derived above is just for the service of the active
users. There are some other components of energy usage, e.g.,
control channel signaling and backhaul that are not modeled.
While we can incorporate their effect in the current model by
assuming fixed energy expenditure and deducing it directly
from the energy arrival rate, a more formal treatment of these
components is left for future work.

B. Availabilities for a Simple Operational Strategy
After deriving the energy utilization rate in Corollary 2 and

recalling that the energy harvesting rate is µ

k

, we can, in
principle, derive BS availabilities for a variety of uncoordi-
nated operational strategies. To fix the key ideas, we begin
by looking at a very simple strategy in which a BS is said
to be available when it is not in energy state 0, i.e., it has
at least one unit of energy. The availability of a k

th tier BS
under this strategy can be derived directly from the stationary
distribution of the birth-death process as follows:

⇢

k

= 1�

0

B@
1� µk

⌫k

1�
⇣

µk

⌫k

⌘
Nk+1

1

CA (6)

= 1�

0

BBBBB@

1� µk
PK

j=1 �j⇢jP

2
↵
j

�uP

2
↵
k

1�
 

µk
PK

j=1 �j⇢jP

2
↵
j

�uP

2
↵
k

!
Nk+1

1

CCCCCA
. (7)

Interestingly we get a set of K fixed point equations in terms
of {⇢

k

}, one for each tier. Due to the form of these equations,
it is not possible to derive closed form expressions for {⇢

k

}.
However, it is possible to comment on the necessary and
sufficient condition for the existence of a positive solution.

Theorem 1. Necessary and sufficient condition for the exis-
tence of a positive solution ⇢

k

> 0, 8 k 2 K for the system
of fixed point equations given by (7) is

KX

k=1

�

k

µ

k

> �

u

. (8)

Proof: For ⇢

k

6= 0, the fixed point equation (7) can be
expressed as

⇢

k

= 1�
✓

1� 

k

⇢

k

1� (

k

⇢

k

)

Nk+1

◆
, (9)

where



k

=

µ

k

P
K

j=1 �j

⇢

j

P

2
↵
j

�

u

⇢

k

P

2
↵
k

. (10)

We first show the fixed point equation (9) has a positive
solution ⇢

k

 1 iff 

k

> 1. For notational simplicity,
denote the RHS of (9) by g(⇢

k

) assuming other parameters
as constants. It is easy to note that g(⇢

k

) is an increasing
function of ⇢

k

and that g(⇢

k

) < 1 for finite N

k

. Therefore,
for existence, it suffices to show that g0(⇢

k

) > 1 for ⇢

k

! 0.
Furthermore, it is easy to show that g0(⇢

k

) = 

k

for ⇢
k

! 0,

which leads to the condition 

k

> 1 for the existence of the
solution. This leads to the following set of inequalities for
1  k  K

µ

k

P
K

j=1 �j

⇢

j

P

2
↵
j

�

u

⇢

k

P

2
↵
k

> 1. (11)

It is easy to show that (8) , (11), which completes the proof
sketch. Further details are delegated to [16] due to the shortage
of space.

Note that while the uniqueness of the fixed point is not
required for this paper, it is possible to show that under (8),
the fixed point solution is also unique [16]. Nevertheless,
condition (8) is basically an energy conservation law, i.e.,
the net energy harvested by all the tiers should be greater
than the effective energy required by all the users. A slightly
more interesting interpretation is in terms of tradeoffs between
various over-provisioning options, such as BS density and
energy storage capacity, as discussed later in this section.

Remark 3 (Effect of battery capacity on availability). Note
that the function g(⇢

k

) is an increasing function of N
k

from
which it directly follows that the availability of a particular
class of BSs increases with the increase in the battery capacity.

Remark 4 (Effect of availabilities of other tiers on ⇢

k

). It is
easy to see that g(⇢

k

) is an increasing function of ⇢
j

, j 6= k.
This implies that the availability of k

th tier increases if the
availability of one or more of the other tiers is increased. This
is consistent with the intuition that if the availability of any
tier is increased, the effective load on other tiers decreases
hence increasing their availabilities.

We now develop tools to study availabilities for a general
energy-based uncoordinated strategy using stopping/hitting
time analysis. We show that the simple strategy discussed
above maximizes the BS availabilities over the space of
uncoordinated strategies, where each BS’s decision to toggle
its operational state is solely dependent upon its current energy
level.

C. Availabilities for any General Uncoordinated Strategy
We focus on a general set of strategies {S(N

kmin, Nkc

)}
in which a BS toggles its state based solely on its current
energy level, i.e., a k

th tier BS toggles to OFF state when
its energy level reaches some level N

kmin and toggles back
to ON state when the energy level reaches some predefined
cutoff value N

kc

> N

kmin as shown in Fig. 3. First note that
for the proposed model it is strictly suboptimal to toggle to
OFF state at any Nmin 6= 0, since it effectively reduces the
storage capacity to N

k

�N

kmin. Therefore, without any loss
of generality we fix N

kmin = 0 (for all tiers) and denote this
strategy by S

k

(N

kc

). For this strategy, we denote the time for
which a k

th tier BS is in the ON state after it toggles from the
OFF state by J

k1(Nkc

) and the time for which it remains in the
OFF state after toggling from the ON state by J

k2(Nkc

). The
cutoff value in the arguments will be dropped for notational
simplicity wherever appropriate. The cycles of ON and OFF
times go on as shown in Fig. 3. It is worth highlighting that
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Fig. 3. Illustration of how the energy level changes over time. The time for
which BS is in OFF state is shaded. The unit of time is irrelevant.

both J

k1 and J

k2 are in general random variables due to the
randomness involved in both the energy availability and its
utilization, e.g., J

k1 can be formally expressed as

J

k1(Nkc

) = inf{t : E
k

(t) = 0|E
k

(0) = N

kc

}, (12)

where E
k

(t) denotes the current energy level of a k

th tier BS
at time t. For this setup, the availabilities depend only on the
means of J

k1 and J

k2 as shown in the following Lemma.

Lemma 2 (Availability). The availability of a k

th tier BS for
any operational strategy can be expressed as

⇢

k

=

E[J
k1 ]

E[J
k1 ] + E[J

k2 ]

=

1

1 +

E[Jk2 ]
E[Jk1 ]

, (13)

where E[J
k1 ] is the mean time a BS spends in the ON state

and E[J
k2 ] is the mean time it spends in the OFF state.

Proof: For a particular realization, let {J (i)
k1

} and {J (i)
k2

}
be the sequences of ON and OFF times, respectively, with i

being the index of the ON-OFF cycle. The availability can
now be expressed as the fraction of time a BS spends in the
ON state, which leads to

⇢

k

= lim

n!1

P
n

i=1 J
(i)
k1P

n

i=1 J
(i)
k1

+

P
n

i=1 J
(i)
k2

. (14)

The proof follows by dividing both the numerator and the
denominator by n and invoking the law of large numbers.

To set up a fixed point equation similar to (7) for the strategy
S
k

(N

kc

), we need closed form expressions for the mean ON
time E[J

k1 ] and the mean OFF time E[J
k2 ]. Note that the

OFF time for S
k

(N

kc

) is simply the time required to harvest
N

kc

units of energy, which is the sum of N

kc

exponentially
distributed random variables, each with mean 1/µ

k

. Therefore,
E[J

k2 ] =
Nkc
µk

, which simplifies the availability expression to

⇢

k

=

1

1 +

Nkc
µkE[Jk1 ]

. (15)

To derive E[J
k1 ], we first define the generator matrix for the

birth-death process corresponding to a k

th tier BS as A

k

=

2

666664

�µ

k

µ

k

0 · · · 0 0

⌫

k

�µ

k

� ⌫

k

µ

k

· · · 0 0

0 ⌫

k

�µ

k

� ⌫

k

· · · 0 0

...
...

. . .
0 0 0 · · · ⌫

k

�⌫

k

3

777775
, (16)

where the states are ordered in the ascending order of the
energy levels, i.e., the first column corresponds to the energy
level 0. To complete the derivation, we need the following
technical result. Please refer to Proposition 5.7.2 of [17] for a
more general version of this result and its proof.

Lemma 3 (Mean hitting time). If the embedded discrete
Markov chain of the CTMC is irreducible then the mean time
to hit energy level 0 (state 1) starting from energy level i (state
i+ 1) is

E[J
k1(i)] =

⇣
(�B

k

)

�1
⌘
(i), (17)

where is a column vector of all 1s and B

k

is a (N

k

� 1)⇥
(N

k

� 1) sub-matrix of A
k

obtained by deleting first row and
column of A

k

.

For A

k

given by (16), we can derive a closed form ex-
pression for each element of (�B

k

)

�1 after some algebraic
manipulations. The (i, j)

th element can be expressed as

(�B

k

)

�1
(i, j) =

1

⌫

j

k

min(i,j)X

n=1

µ

j�n

k

⌫

n�1
k

. (18)

Now substituting (18) back in (17) gives us the mean ON time
for any strategy S

k

(N

kc

), which when substituted in (15) gives
a fixed point equation in {⇢

k

} similar to (7), as illustrated
below for the two policies of interest.

1) Policy 1 (S
k

(1)): In this policy, each BS serves users
until it depletes all its energy after which it toggles to OFF
state. It toggles back to ON state after it has harvested one
unit of energy. Using (17) and (18), the mean ON time E[J

k1]

for this policy can be expressed as

E[J
k1 ] =

1

⌫

k

1�
⇣

µk

⌫k

⌘
Nk

1�
⇣

µk

⌫k

⌘
, (19)

which when substituted into (15) leads to the same fixed
point equation as (7), establishing the equivalence between
this policy and the one studied in the previous subsection.

2) Policy 2 (S
k

(N

k

)): As in the above policy, each BS
serves users until it depletes all its energy after which it toggles
to OFF state. Under this policy, the BS waits in the OFF
state until it harvests N

k

units of energy, i.e., it is completely
charged. Using (17) and (18), E[J

k1 ] can be computed as

E[J
k1 ] =

1

µ

k

� ⌫

k

µ

k

⌫

k

1�
⇣

µk

⌫k

⌘
Nk

1�
⇣

µk

⌫k

⌘ � N

k

µ

k

� ⌫

k

, (20)

which when substituted in (15) gives the fixed point equation
for this policy.
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Fig. 4. Availabilities for strategies S(1) and S(N) for values of the over-
provisioning factor �.

Before providing more details for the above policies, we
prove the following theorem, which establishes a fundamental
upper limit on the availabilities of various types of BSs that
cannot be surpassed by any uncoordinated strategy.

Theorem 2. For a given K-tier HCN, the availabilities of all
the classes of BSs are jointly maximized if each tier follows
strategy S

k

(1). The availabilities are strictly lower if any one
or more tiers follow S

k

(i) with i > 1.

Proof: From (15), note that the availability for a k

th tier
BS is maximized if E[J

k1(Nkc

)]/N

kc

is maximized. Using
(17) and (18), it is straightforward to show that

arg max

1iNk

E[J
k1(i)]

i

= 1. (21)

The proof now follows from the fact that if any tier follows
strategy S

k

(i) (i > 1), its availability will be strictly lower
than that of S

k

(1), which increases the effective load on other
tiers and hence decreases their availabilities, as discussed in
Remark 4. Therefore, to jointly maximize the availabilities of
all the tiers, each tier has to follow S

k

(1).

D. Discussion on Tradeoffs in Over-Provisioning
For conciseness, we limit this concluding discussion to a

single tier network and define the over-provisioning factor
� = �µ/�

u

as the ratio of the net energy harvested per
unit area per unit time and the net energy utilized per unit
area per unit time. For various values of �, we numerically
solve the fixed point equation for policies S(1) and S(N) and
plot the results in Fig. 4. We note that there is a tradeoff
between the battery capacity and over-provisioning factor,
i.e., to achieve the same availability, either we can have a
higher over-provisioning in terms of BS density or have a
higher energy storage capacity. More interestingly, we observe
that for reasonable energy storage capacities, the availability
probability approaches unity, which shows that this setup,
despite randomness in the energy harvesting and utilization,

is surprisingly reliable if designed properly. We also observe
that S(1) outperforms S(N) as expected by Theorem 2.

IV. CONCLUSIONS

In this paper, we have developed a comprehensive frame-
work to study self-powered HCNs. Using novel tools from
stochastic geometry and random walk theory, we quantified the
uncertainty in BS availability due to the finite battery capacity
and inherent randomness in energy harvesting. We further
derived a fundamental limit on the availability of each class of
BSs, which cannot be surpassed by any uncoordinated strategy.
This work has many extensions, such as incorporating more
accurate energy expenditure model taking into account energy
spent on backhaul and control signaling. Another possible
extension is to incorporate the BS availability results in short
time scale analysis while studying key performance metrics
such as downlink coverage and rate.
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