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Abstract—We consider a wireless time-slotted random access
channel where user arrivals are characterized by a Poisson
process. Each user comes with a fixed payload, which has to
be transmitted in the slot in which it arrives. If the transmission
is successful, the user leaves the system, else it is dropped. The
receiver and users are assumed to have knowledge of the arrival
rate �, but they are not aware of the actual number of users
simultaneously attempting to communicate during a given time
slot. In contrast to a conventional slotted ALOHA-based strategy
where the channel is partitioned into orthogonal subchannels and
each user communicates on a randomly chosen subchannel, we
propose a novel strategy whereby users transmit simultaneously
over the entire channel resource and the receiver jointly decodes
the transmissions. Under the proposed strategy, neither users
nor the receiver have prior knowledge of the active user set. Our
analysis concretely demonstrates that the proposed strategy is
optimal in terms of maximizing the average throughput among
all uncoordinated strategies. Numerical results show that the pro-
posal provides an order of magnitude throughput improvement
compared to slotted ALOHA in a single-cell environment under
a 10% maximum outage constraint.

I. INTRODUCTION

Random access is a common strategy for multiple users
attempting to communicate to a single receiver over shared
wireless channel resources. For example, it is used in wireless
local area networks (LANs) under IEEE 802.11 standards for
payload transmission and in cellular networks under wideband
code division multiple access (WCDMA) and long term evo-
lution (LTE) standards for initiating uplink transmissions [1].
Random access becomes especially attractive for data trans-
mission when the payloads are small, e.g., for machine-to-
machine (M2M) communications where the payloads are of
the order of a few hundred bytes [2], [3].

A common model for random access is the slotted ALOHA
network, where the time domain is partitioned into slots
and users randomly transmit at a fixed rate during a given
time slot. Packet collisions occur when more than one user
transmits during a given slot. This model can be generalized
further by partitioning each time slot into orthogonal frequency
resources, where each user chooses a frequency resource at
random. For example in cellular random access, the channel
is partitioned into orthogonal spreading codes, and collisions
occur when more than one user chooses a given code [1].

In contrast to this network-based approach to random access
communication, there has been relatively little information
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theory-based analysis that accounts for the noise and inter-
ference caused by simultaneous transmissions [4]. One recent
exception is [5], which provides a rigorous information the-
oretic framework and characterizes the achievable rate region
within a guaranteed gap of the optimal region.

Our study in this paper differs from [5] in two important
ways. First, we assume all users transmit with a fixed rate
(spectral efficiency) R bps/Hz as derived from the fixed
payload size (in bits), the time slot duration (in seconds) and
bandwidth (in Hz). Second, we incorporate random arrivals,
where the number of users with data to transmit in each
time slot are characterized by a Poisson process with mean
�. We propose a novel strategy for maximizing the average
throughput, defined as the product of R, �, and the probability
of success for a given user.

Under our proposal, each user with data decides to transmit
independently of the other users and the channel gains with
certain fixed probability, which is the same for all the users.
A transmitting user, also termed as an active user, chooses a
codebook at random from a set of Gaussian codebooks known
to all users and the receiver. An active user then transmits
a preamble sequence, uniquely associated with the chosen
codebook, followed by the encoded message. In contrast to
the cellular random access model, where users transmit over
randomly chosen orthogonal frequency resource, each active
user transmits over the entire bandwidth under proposed strat-
egy. The receiver first detects the presence of active codebooks
using the preambles and then jointly decodes them. During a
given time slot, the transmissions are successful if the rate
vector, corresponding to the set of active users, lies within the
multiple access channel (MAC) capacity region defined by the
users’ received signal-to-noise ratios (SNRs).

The paper is organized as follows. In Section II, we de-
scribe the system model of a single cell wireless network. In
Section III, we formulate the problem of maximizing through-
put in an uncoordinated, random access channel, and we
describe our proposed optimal strategy. We also formulate the
throughput of a conventional random access strategy based on
frequency division multiple access (FDMA). In Section IV, we
show numerical results comparing the outage and throughput
performance of the optimal and FDMA strategies.

II. SYSTEM MODEL

Consider the uplink of a single cell system in which
the base station is located at the origin and the users are
uniformly distributed around it in a circular disk of radius r

o

.
Although slightly idealistic for cellular networks, this scenario
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Fig. 1. A typical time-frequency resource “slice” with K arrivals.

is still relevant for a variety of applications, e.g., it is one
of the simulation scenarios in 3GPP model to study M2M
communication in cellular networks [6]. The users transmit
such that the number of arrivals at the base station can be
modeled as a Poisson process with rate � arrivals per second.
Time is divided into slots of duration ⌧

s

secs and total available
bandwidth is W Hz. Each such slot acts as a “resource
slice” as shown in Fig. 1. The number of users with data to
transmit in any given slot is denoted by K, which is Poisson
distributed with mean �⌧

s

. For multiple access, we consider
uncoordinated transmission, where the base station does not
play any role in scheduling users, i.e., it neither decides the
set of transmitting users nor their exact scheduling over time-
frequency resources.

We assume that each user enters the system with a deadline
of ⌧

s

secs, i.e., it transmits over a single time slot and leaves
the system upon successful completion of the data transfer.
If the transmission is not successful, the packet is dropped
and is said to be in outage. Throughout this paper, we restrict
our attention to transmission strategies in which all the users
transmit at the same average rate R over the duration ⌧

s

whenever they transmit. Although it may be advantageous
to have different users transmitting at different rates, such
strategies are outside the scope of this paper. Each user is
assumed to have a maximum transmit power constraint of
P

max

. The uplink channel is modeled as a combination of
power-law pathloss, large scale shadowing and small scale
fading effects. Therefore, the received power at the base station
from a device located at distance r is

P

r

= P

t

XhGr

��

, (1)

where P

t

 P

max

is the transmit power, X is a log-normal
random variable modeling shadowing gain with standard devi-
ation � dB, h ⇠ exp(1) models small scale channel gain due
to Rayleigh fading, G is the direction based antenna gain, �
is the pathloss exponent, and the device index is suppressed
for simplicity of notation. To study the composite effect of
all these link budget parameters, we define the reference SNR
µ as the average received SNR from a device transmitting
at maximum power P

max

over bandwidth W located at cell
edge, i.e., at distance r

o

from the base station. Therefore, the
received SNR µ

r

at the base station from a device located
at distance 0 < r  r

o

and transmitting over a bandwidth
WN  W can be expressed in terms of r as

µ

r
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W
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P

t

P
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where the factor W

WN
accounts for the difference in the noise

TABLE I
NOTATION SUMMARY

Notation Description
W Total bandwidth in Hz
⌧s Slot duration in secs
� Rate of new arrivals at the base station
gk The effective channel gain of kth device

P

max

Maximum power constraint
µ Reference SNR

K;Ks Number of arrivals in each slot; number of successful
transmissions

R;S Maximum common rate; maximum throughput
✏ Outage probability
⇥ Transmission probability in the optimal uncoordinated
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power due to the difference in the bandwidths for which
µ

r

and µ are defined. This will be helpful in analyzing
the uncoordinated FDMA strategy in the next section. Now
defining the effective channel gain as g = Xh

⇣

r

ro

⌘��

, the
expression for received SNR µ

r

can be further simplified to

µ

r

=

W

WN

P

t

P

max

µg. (3)

For tractability, we assume capacity achieving codes. Please
note that the effect of finite block length, especially important
when the payloads are small, e.g., in M2M communications,
can be easily incorporated by means of an SNR gap. Interested
readers can refer to [7] for more details. For a user transmitting
over time ⌧N  ⌧

s

, bandwidth WN  W , and with slight
overloading of µ

r

to denote received signal-to-interference-
plus-noise ratio (SINR), the rate (or more precisely, the spec-
tral efficiency) achieved by the user over a particular time-
frequency resource slice can be expressed as

R =

⌧N
⌧

s

WN
W

log

2

(1 + µ

r

) bps/Hz. (4)

The received SINR depends upon the decoding strategy as
discussed in the next section. For the special case of FDMA,
where a user with channel gain g transmits at P

max

over W

B

Hz, the rate achieved is
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1

B
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)
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where the pre-log factor of 1

B

comes from (4) and (a) follows
from (3). For ease of notation, we denote the set of integers
from k

1

to k

2

> k

1

by Zk

2

k

1

= {k
1

, k

1

+ 1, . . . , k

2

} ✓ Z.
Similarly, any general sequence {x

k

1

, x

k

1

+1

, . . . x

k

2

} for k
1


k

2

is denoted by {x
k
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k

1

. The notation used in this paper is
summarized in Table I for quick reference.

III. UNCOORDINATED MULTIPLE ACCESS

This is the main technical section of the paper where we
study the maximum throughput for uncoordinated strategies.
We first formulate the throughput maximization problem in
terms of outage probability, common rate and the user arrival
rate. We then propose a novel multiuser detection strategy
and establish its optimality for uncoordinated transmission.



To compare the optimal results with a realistic baseline,
we also formulate the throughput maximization problem for
uncoordinated FDMA.

A. Problem Formulation
We begin this discussion by introducing the main metric of

interest for this work, which is the average throughput S , for
a given arrival rate � and a given transmission strategy that
captures the average number of successfully transmitted bits
per unit time per unit bandwidth. For a slot with K arrivals,
out of which K

s

succeed, the average throughput S can be
expressed as

S(�, µ,R) =

1

⌧

s

E [K

s

]R, (6)

where R denotes the common rate of each device for the
given transmission strategy, µ is the reference SNR and K ⇠
Pois(�⌧

s

) by assumption. The rest of the arrivals are dropped
and the corresponding users are said to be in outage. Due
to the packet deadline of ⌧

s

, these dropped packets cannot
be considered for a future transmission. Now assuming T (s)

i

denotes the event that the i

th packet, for i 2 ZK

0

, succeeds,
the number of successful transmissions K

s

can be expressed
in terms of K as

K
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K

X
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1
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i

⌘

, (7)

where 1(E) is an indicator function that takes value 1 when
event E occurs and 0 otherwise. Using (7), E[K

s

] can be
derived for a given arrival rate � as follows:

E[K
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= (1� ✏)E[K], (10)

where (a) follows from the linearity of inner expectation.
Thus, the outage probability can be expressed in terms of K

and K

s

as

✏ = 1� E [K

s

]

E [K]

, (11)

using which the average throughput S can be expressed as

S(�, µ,R) =

E[K]

⌧

s

R(1� ✏) = �R(1� ✏). (12)

Given a maximum outage constraint ✏

max

, the throughput
maximization problem can now be formulated as

max

R
�R(1� ✏)

s.t. ✏  ✏

max

. (13)

We will henceforth refer to the maximum throughput corre-
sponding to the solution of the above optimization problem as
the rate-maximized throughput. We now remark on the solution
of this optimization problem below.

Remark 1 (Solution procedure). In addition to the arrival
rate and the choice of multiple access strategy, the outage

probability ✏ is also a function of the common rate of the
users. Therefore, for a given arrival rate �, there is a maxi-
mum common rate R corresponding to each value of outage
probability ✏. As discussed for uncoordinated optimal and
FDMA strategies in this section, it is, in principle, possible to
characterize this relationship analytically. However, the form
of this relationship is such that it does not lead to a closed form
expression for the maximum throughput. Therefore, we have
to resort to the numerical solution for the above optimization
problem, which is straightforward once the relationship be-
tween the maximum common rate R and outage probability ✏

is established. Characterizing this relationship for the optimal
and FDMA strategies is our goal for the rest of this subsection.

To highlight the fact that the outage probability is a function
of transmission strategy ⇧, arrival rate �, reference SNR µ

and common rate R, we let E⇧

(�, µ,R) denote the outage
function as defined by (11). As remarked above, for a desired
outage level ✏, the maximum common rate R⇤

(�, ✏, µ) can be
determined as follows:

R⇤
(�, ✏, µ) = argmax

R

⇥

E⇧

(�, µ,R)  ✏

⇤

, (14)

for which we need to characterize outage function
E⇧

(�, µ,R), which is done next.

B. Optimal Uncoordinated Multiple Access

Using (11), the outage function for the optimal uncoordi-
nated strategy can be expressed as:

E⇧UO
(�, µ,R) = min

⇧UO
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where K is the number of arrivals in a particular slot and K

s

is the number of these arrivals that succeed. The goal now is
to derive E [K

s

], which involves a novel multiuser decoding
strategy as discussed in the next theorem. The details of the
proposed strategy appear in the achievability part of the proof.

Theorem 1. The mean number of users that successfully
communicate at rate R during a given time slot in the optimal
uncoordinated transmission strategy is given by

E [K

s

] = max

⇥

�⌧

s

⇥E
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|L|
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P (C(P
max
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where ⌦ ⇠ Pois(�⌧

s

⇥) and the event C(P
max

) is defined as
⇢
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where L ⇢ T and T is the set of users transmitting in the
given slot, with |T | = ⌦.

The proof of this theorem involves both converse and
achievability parts, discussed in detail below.



Proof: (Converse) To prove the converse, consider any
strategy ⇧

U

for uncoordinated transmission that governs: i) the
decision to transmit, and ii) the power level of a user which has
data to transmit in any given slot independent of total number
of users K in that slot and their channel gains {g

k

}K
1

. Let es(n)
be the indicator for whether user n transmits, i.e., es(n) = 1

when user n transmits and es(n) = 0 otherwise. Let P

n


P

max

be the transmit power of user n that is transmitting. Note
that for any uncoordinated transmission strategy, es(n) and P

n

are independent of K, {g
k

}K
1

and independent of each other.
Denote the set of active users by T , i.e.,

T = {n : es(n) = 1} . (20)

Denote the common rate by R and suppose a subset L ⇢ T
of users’ messages are successfully decoded by the receiver.
Then from the MAC theorem [8], we require that
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where l = | eL|. For ease of notation, we denote this event by
C({P

n

}, {g
n

}, µ,L, T ). In the rest of the proof, we will use
the short hand notation C({P

n

}), with the understanding that it
does depend upon other parameters but they are not important
for the following arguments. The average number of users that
are successfully decoded can now be upper bounded by

E[K
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where (a) follows from the fact that the transmit power is
independent of all the other variables, including channel gains
of the respective user, which means that “optimal” value will
be the same for all the users, (b) follows from the fact that
the following function

X

i2L
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is an increasing function of P for given set of channel gains,
(c) follows by simply setting ⌦ =

P

K

n=1

es(n), which is a

Poisson distributed random variable with mean �⌧

s

⇥, and (d)

follows from the independence of es(n) from all other random
variables. This completes the proof of the converse.

(Achievability) We now present the achievability proof, i.e.,
show that the above upper bound on the average number of
successfully decodable users is achievable as the number of
channel symbols per slot goes to infinity. First, pick a set
of ¯

N code books for the AWGN MAC, each with 2

R code
words of length n̄. The code words can be picked at random
from the typical set of Gaussian random input distribution
with transmit power P

max

as is usually done in the proof of
the MAC coding theorem [8]. Observe that the code books
for each user are selected independently of the other users
and the SNR. Furthermore, the code book is specifically not
dependent on the channel gain except for the number of code
words, which is governed by the rate R. Thus a combination
of such independently chosen code books can form the code
book of the MAC.

At the beginning of each transmission, a preamble Gaussian
sequence of length q that is unique to that code book is
transmitted to help the receiver detect which code books are
being transmitted. All the code words of the same code book
will have the same sequence while the different code books
will have distinct sequences. The sequences can be drawn at
random from a Gaussian random variable with variance P

max

.
As before, suppose there are K users who have data to

transmit in a given slot. In our strategy, each user will decide
to transmit with probability ⇥. Recall that the total number
of transmitting users is denoted by ⌦. When a user decides to
transmit, it will pick one of the code books from ¯

N code books
at random and map the message to one of the code words in
the chosen code book in the usual way and first transmit the
preamble followed by the code word.

The collision probability P
c

that two or more transmitting
users pick the same code book when ⌦ users attempt to
transmit is given by

P
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(⌦) = 1�
✓
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which is proved in Lemma 1 of [9]. Since ⌦ is a Poisson
random variable, there exists ⌦

max

such that P{⌦ > ⌦

max

} <
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0
/2. By picking ¯

N large enough so that P
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we can ensure that the overall collision probability is P
c
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0.
Now consider only the case when the transmitting users

have picked distinct code books. We propose a decoding
strategy in which the receiver first detects which code books
are in use, i.e, code words from which code books are
transmitted in that slot, and then proceed to decode the code
words. With a simple correlator detector, the receiver can
detect the presence of each of the possible code books. The
total detection error – detecting positively a code book that is
not used as well as missing a code book that is in use – can
be bounded by

P
d

 ¯

N exp

✓

�q�

✓

µg

min

1 + (

¯

N � 1)µg

max

◆◆

+

¯

N (P (g < g

min

) + P (g > g

max

)) , (31)



where we bounded the individual detection error probabil-
ities assuming the worst case channel scenario, i.e., the
interferers have some large channel gain while the desired
signal being detected has a small channel gain. Observe
that it is possible to first pick g

min

and g

max

so that
¯

N (P (g < g

min

) + P (g > g

max

))  �

00
/2 and then pick q

sufficiently large so that P
d
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00. Furthermore, since q is
fixed relative to block length, the loss in capacity because
of the preamble can be made arbitrarily small. The resulting
loss in transmission rate can thus be made negligible. Thus
we can assume that the receiver knows which code books are
in use. Note that since the channels are static the receiver
can similarly first estimate the channel accurately from the
preamble and then apply the joint typicality test for the known
channels. We will assume that the channel is estimated without
errors observing that the increase in decoding error probability
because of channel estimation errors can be shown to be
arbitrarily small when q goes to infinity.

Once the channels are determined, the receiver tries to
evaluate which subset of code books from the detected code
books can actually be decoded treating the rest as noise. To
this end, the receiver can compute the rate region for decoding
all possible subsets of code books detected and pick the largest
set of users for which the rate R is achievable. In other words,
the receiver can find the subset L of the set of code books T
detected to be in use. Thus, the receiver will attempt to decode
the maximal set of code words from the code books for which
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From the MAC theorem, we know that whenever the above
condition is satisfied then the decoding error,

P
e

 �

000
(n̄) (33)

where �

000 ! 0 as n̄ ! 1.
Thus as n̄ ! 1, the combined error probability P

c

+P
d

+

P
e

! 0 whenever the rate constraint (32) is met. Thus the
bound on RHS of (28) is achievable.

Remark 2 (Numerical computation of (18)). The mean num-
ber of successful users given by (18) can be numerically
computed via Monte Carlo simulations, where the expectation
with respect to ⌦ corresponds to the Poisson arrival process
of the users (with mean �⌧

s

⇥) whose channels are obtained
by uniformly placing them on a disk of radius r

o

.

C. Uncoordinated FDMA with Equal Allocation
Assume that the bandwidth is partitioned into B � K

equal subbands. Using (11), we derive the outage function
for uncoordinated FDMA with equal bandwidth allocation. We
assume that the users choose one of the B subbands randomly.
Since the aggregate arrivals are modeled as Poisson and each
user chooses a subband randomly, the arrival process in each
subband can also be modeled as Poisson with an appropriately
scaled arrival rate [10]. If a subband is chosen by more than
two users, the transmission of all those users is assumed to
be unsuccessful. Note that this corresponds to a worst case

scenario, because in practice one of these users may still have a
strong enough channel to ensure successful transmission even
after treating the interference as noise. Nevertheless, under
these assumptions, the transmission is successful for a given
common rate only when the following two conditions are met:
i) the user under consideration is the only one to choose a
particular subband, and ii) its channel is sufficiently strong
to achieve common rate R over the chosen band. Using (5),
the rate of the user with channel gain g

k

transmitting over
bandwidth B is
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Denoting by ⇧

UF

the set of uncoordinated FDMA strategies,
the outage function can now be derived as follows:
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(39)

where e

B in (a) is the number of frequency bins with exactly
one arrival, which is a function of total number of arrivals
in the slot (K) and the number of partitions (B), (a) follows
from the fact that for a successful transmission, the user should
arrive in one of the e

B bins and should have a strong enough
channel to achieve rate R, (b) follows from the independence
of these two events, (c) follows from the fact that the number
of arrivals in each subband is Poisson distributed as stated
above, and (d) follows from (34).

IV. NUMERICAL RESULTS

For the numerical results, we assume that the reference SNR
is µ = 0dB. This would be obtained, for example, with a
device transmitting with 10dBm (10mW) power over 1MHz
bandwidth, a noise power spectral density of -174dBm/Hz, a
receiver noise figure of 5dB, a receiver antenna gain of 14dB, a
3.76 pathloss exponent, a 128dB pathloss intercept at 1000m,
and a reference distance of 1360m [11]. Assume ⌧

s

= 1 sec.
Fig. 2 shows the outage probability ✏ versus the user rate R

for a given arrival rate of � = 16 users per second. The outages
for the optimal and FDMA strategies are given respectively
by (17) and (39). We note that the for the given outage
probability, the common rate supported by the optimal strategy
is significantly higher than the FDMA strategy. In particular, in
the regime of interest where the outage probability is ✏ = 0.1,
the rate using the optimal strategy is 7x the FDMA rate.

Fig. 3 presents the corresponding throughput for the two
transmission options computed using (12) for � = 16 ar-
rivals per second. For the case of the uncoordinated optimal
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Fig. 2. Outage ✏ versus rate per user R, for � = 16 and µ = 0 dB.
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Fig. 3. Throughput S versus rate per user R, for � = 16 and µ = 0 dB.

transmission, the maximum throughput is achieved when R =
0.35, and the corresponding outage, obtained from Fig. 2, is
✏ = 0.20. For the FDMA case, the maximum throughput is
achieved at R = 0.2, which corresponds to the outage ✏ =

0.50 in Fig. 2. Since the practical system would not tolerate
such a high outage, this motivates us to consider the through-
puts subject to some maximum outage, say ✏

max

= 0.1. With
this maximum outage, the rate-maximized throughput given
by (13) for � = 16 is 0.7 bps/Hz and 4.9 bps/Hz for FDMA
and optimal transmission, respectively.

Fig. 4 shows the rate-maximized throughput as a function
of � with ✏

max

= 0.1. As the arrival rate � increases,
the rate achieved per user decreases, but the overall rate-
maximized throughput increases for both the FDMA and
optimal strategies. The gain in rate-maximized throughput of
the optimal strategy versus FDMA increases logarithmically
with �. While the gain is 7x with � = 16, it is 10x with
� = 200.

V. CONCLUSION

In this paper, we incorporated decoding techniques of co-
ordinated MAC to random access and obtained a new fun-
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Fig. 4. Rate-maximized throughput versus arrival rate �, where for a given
�, throughput is constrained such that the outage is no more than ✏

max

= 0.1.

damental result characterizing the throughput performance of
optimal uncoordinated random access transmission with joint
decoding. The proposed scheme is shown to provide order
of magnitude throughput improvement over slotted ALOHA.
This work has numerous extensions. From information the-
oretic perspective, it is important to extend it to the case
where each user has knowledge of its own channel and
can thus perform power control in a distributed way. From
cellular systems perspective, it is important to extend this
study to multi-cell scenarios. For delay-tolerant applications,
it is important to study the effect of retransmissions on the
throughput performance.
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