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Codebook-based Beamforming: Motivation
I Transmit beamforming is one of the simplest approaches to achieve full

diversity in MIMO systems.
I Requires channel state information (CSI) at the Tx in the form of transmit

beamforming vector.
I Challenging in FDD large-scale MIMO systems that cannot utilize channel

reciprocity to acquire CSI.
I Results in significant feedback overhead when the number of antennas is

large.
I One solution: Construct a set of beamforming vectors constituting a

codebook, which is known to both the Tx and the Rx.
I The problem reduces to determining the best beamforming vector at the Rx

and conveying its index to the Tx over the feedback channel.
I Question: What is the best way to construct these codebooks?
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Block Diagram and Notation

I We consider Mt transmit antennas and Mr = 1 receive antennas.
I H ∈ CMr×Mt is the block fading MIMO channel.
I s ∈ C: transmitted data symbol.
I f ∈ CMt×1, z ∈ CMr×1 are the Tx beamforming and Rx combining vectors.
I F = {f1, . . . , f2B} is the codebook, where B bits per channel use is the

capacity of the error-free feedback channel.
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Problem Formulation: Basic Setting
I Assuming n ∼ CN (0, NoIMr) to be additive white Gaussian noise, we have

y = Hfs+ n

ŝ = zHHfs+ zHn

I We assume perfect channel knowledge at the receiver, which means it can
determine optimal beamforming and combining vectors.

I Total transmit power: E[‖fs‖22] = E[|s|2] ‖f‖22 = Et ‖f‖22.
I For the receiver combining vector, we have ‖z‖22 = 1, for which the receiver

SNR γr is

γr =
Et|zHHf |2

|zHnnHz|
= γt
|zHHf |2

‖f‖22
= γtΓ(f , z),

where γt = Et‖f‖2/No is the transmit SNR and Γ(f , z) is the beamforming
gain. Let’s look at the beamforming gain carefully now.
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Problem Formulation: Max Beamforming Gain for a given f

I Recall from the previous slide that the beamforming gain is defined as

Γ(f , z) =
|zHHf |2

‖f‖22
.

I Because of the transmit power constraint, it is standard to assume ‖f‖2 = 1,
which gives Γ(f , z) = |zHHf |2.

I SNR can be maximized at the receiver with z = Hf/ ‖Hf‖2, which gives
Γ(f) = ‖Hf‖22 as the maximum beamforming gain for a given f .
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Determining Optimal f
Optimization problem: Choose f such that Γ is maximized.

f = arg max
x∈CMt×1

Γ(x)

subject to ‖x‖22 = 1

Observation: If vector f maximizes Γ(f) = ‖Hf‖22, then fejθ for any θ ∈
[0, 2π) will also maximize Γ(x). Therefore, the solution to the above problem
is not unique.

A solution to the above problem is f = v1, where v1 is the dominant
eigenvector of HHH. The maximum value of the beamforming gain is
Γ(v1) = ‖Hv1‖22 = λ1, where λ1 is the largest eigenvalue of HHH.

How is this connected to codebook construction?
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Codebook Construction: Intuition

I Let’s first assume for a moment that each H provides a unique optimal f .
We will see shortly how to make this happen.

I If we endow a distribution on H, we also get a corresponding distribution on
f .

I Now the problem of codebook construction reduces to determining
F = {f1, . . . , f2B} such that distortion introduced because of selecting a
component from F instead of the actual beamforming vector f is minimized.

I Challenge: Since we do not get a unique f for H, the correct way to think
about this problem is to think of the codebook as a finite set of subspaces in
the Euclidean space rather than a finite set of vectors. Eventually, we need a
distortion measure that is invariant to the phase shifts of f . This can be
formally done by posing this problem on the Grassmannian manifold.
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Grassmann Manifold: Definition and Context

Definition 1 (Complex Grassmann Manifold G(Mt,M) [5])
Space formed by all M dimensional linear subspaces embedded in CMt :

G(Mt,M) = {span(Y) : Y ∈ CMt×M ,YHY = IM}

I Y ∈ G(Mt,M) can be interpreted as a point on G(Mt,M) or a subspace in
CMt×1.

I Let Y be the orthonormal basis that spans Y . Then then Y′ = YR also
spans Y for any unitary matrix R. Therefore, Y and Y′ map to the same
point Y on the manifold (and we say Y ≡ Y′).

The above equivalence relation will ensure that the optimal f for our beam-
forming problem is unique on the Grassmann manifold.
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Grassmann Manifold: Application to the Beamforming Problem

I Since we are interested in “vectors”, the Grassmann manifold of interest for
us is G(Mt, 1). It is just a set of all lines passing through origin in CMt×1.

I A line L passing through origin in CMt×1 is represented in G(Mt, 1) by a
unit vector f that spans the line.

I Let f ′ = fejθ. It is easy to argue that f ′ ≡ f , i.e., they both span the same
line L and hence correspond to the same point on G(Mt, 1).

I This is really what we wanted.
I One way to define distance d between two points of G(Mt, 1) corresponding

to f1 and f2, respectively, is in terms of the sine of angle between the lines:
d(f1, f2) = sin(θ1,2) =

√
1− |fH1 f2|2.

I It is easy to check that the above distance metric is invariant to phase
changes in f1 or f2.

I We will also show that this choice of distance metric is optimal.
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Clustering on a Grassmann Manifold

I Summary of key takeaways thus far:
I We have a unique solution f on the Grassmann manifold for every H.
I We know how to measure distance between points lying on the manifold.
I Any probability distribution on channel H ∈ CMr×Mt will impose a

probability distribution on f in G(Mt, 1).
I Rayleigh fading channels correspond to the uniform distribution on G(Mt, 1),

which reduces the problem of codebook construction to the well-known
Grassmann line packing problem.

I However, real-world channels will mostly exhibit clustering, which can be
exploited to construct codebooks that are cognizant of the underlying
channel distribution.

I This reduces the problem of codebook construction for general channels to
the problem of clustering on Grassmann Manifold.
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Ripley’s K Function: Channel Clustering
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Figure illustrating clustering behaviour of real-world channel with Mt = 2, Mr = 1 using
Ripley’s K function.
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Grassmannian K-means Clustering
I The idea on the previous slide can now be implemented using K-means

clustering on the Grassmann manifold.
I We need to choose K centroids such that the average distortion due to the

quantization according to a pre-defined distortion measure is minimized.
I The distortion measure and quantizer are defined as follows.

Definition 2 (Distortion measure)

The distortion caused by representing f ∈ G(Mt, 1) with f ′ ∈ G(Mt, 1) is defined
as the distortion measure do which is given by do(f , f ′) = d2(f , f ′).

Definition 3 (Grassmann quantizer)

Let F ⊂ G(Mt, 1) be a B-bit codebook such that F = {f1, ...., f2B}, then a
Grassmann quantizer QF is defined as a function mapping elements of G(Mt, 1)
to elements of F i.e. QF : G(Mt, 1) 7→ F .
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Grassmannian K-means Clustering
I A performance measure of a Grassmann quantizer is the average distortion
D(QF)

D(QF) := Ex

[
do
(
x, QF(x)

)]
= Ex

[
d2
(
x, QF(x)

)]
,

where Ex means averaging over the dataset X = {x} in lieu of the
probability distribution p(x).

I The set of K centroids (K = 2B) that minimize D(QF) is

FK = arg min
F⊂G(Mt,1)

|F|=2B

D(QF) = arg min
F⊂G(Mt,1)

|F|=2B

Ex

[
d2(x, QF(x))

]
.

I The associated quantizer is

QFK (x) = arg min
fi∈F

do(x, fi) = arg min
f∈F

d2(x, fi).
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Grassmannian K-means Clustering
I We use Linde-Buzo-Gray (LBG) for K-means clustering.
I The only non-trivial step is the centroid calculation for a set of points.
I The centroid of n elements in a general manifold with respect to an

arbitrary distortion measure does not necessarily exist in a closed form.
I Fortunately, the centroid computation on G(Mt, 1) is feasible because of the

following Lemma, which enables extremely efficient construction of the
codebooks.

Lemma 1 (Centroid computation)
For a set of points Vk = {xi}Nk

i=1, xi ∈ G(Mt, 1), that form the k-th Voronoi
partition, the centroid fk is

fk = arg min
f∈G(Mt,1)

Nk∑
i=1

d2(xi, f) = eig

( Nk∑
i=1

xix
H
i

)
,

where eig(Y) is the dominant eigenvector of the matrix Y.
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Optimality of the Codebook
I In order to define the optimality of the codebook, we use the average

normalized beamforming gain for F

Γav : = EH

[
Γ(f)

Γ(v1)

]
= EH

[
‖Hf‖22
λ1

]
= EH

[ Mt∑
i=1

λi|vHi f |2

λ1

]
Mr=1

= Ev1

[
|vH1 f |2

]
.

I To measure the average distortion due to quantization, we use the loss in
Γav as given below:

L(F) := EH

[
1− Γav

] Mr=1
= Ev1

[
1− |vH1 f |2

]
. (1)

I Using this we can define the codebook design criterion on the next slide.
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Grassmannian Codebook Design

Definition 4 (Codebook design criterion)

Over all of the B-bit codebooks F ⊂ G(Mt, 1), the Grassmannian codebook F∗
is the one that minimizes L(F). Therefore F∗ := arg min

F⊂G(Mt,1)

|F|=2B

L(F).

Theorem 2
For a feedback channel with capacity B bits per channel use, the Grassmannian
codebook as defined in Definition 4 is the same as the set of cluster centroids
found by the K-means algorithm for the setting described earlier, i.e. F∗ = FK .
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Grassmannian Product Codebook Design

I Consider full-dimension MIMO communication, where we have a Tx
equipped with a UPA with dimensions Mv ×Mh (MhMv = Mt) while the
Rx has one antenna, i.e. Mr = 1.

I The codebook can be designed using K-means clustering in G(MvMh, 1).
However, K-means clustering may suffer from the well-known curse of
dimensionality when the number of antennas is high.

I In this work, we proposed a new product codebook design in which we
construct the codebook using clustering on lower dimensional manifolds by
exploring the geometry of the UPA.

I Unfortunately, we do not have time to cover this in detail but please check
the arXiv preprint (arXiv:2106.11374) and email us if you have questions.
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Dataset
I We adopted an indoor communication scenario between the base station and

the users with Mr = 1 operating at a frequency of 2.5 GHz.
I The described scenario is a part of the DeepMIMO dataset [4].
I The parameters of the channel dataset are given in Table. 1.

Table: Parameters of the DeepMIMO dataset

Name of scenario I1_2p5
Active BS 3
Active users 1 to 704

Number of antennas (x, y, z) (Mv,Mh, 1)
System bandwidth 0.2 GHz
Antennas spacing 0.5

Number of OFDM sub-carriers 1
OFDM sampling factor 1

OFDM limit 1
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Simulation Results
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Average normalized beamforming gain for different transmit antenna config-
urations Mv ×Mh and feedback-bit allocations [Bv, Bh].
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Results and Conclusion

I We identified that the optimal beamforming codebooks for any arbitrary
channel distribution can be constructed using the K-means clustering of
beamforming vectors on G(Mt, 1).

I These codebooks outperformed both the baselines, namely,
Kronecker-product DFT codebooks and Grassmann line packing-based
codebooks (even after incorporating correlation using [3]), and provide gains
comparable to that of optimal MRT beamforming.

I Since this problem is inspired by the large dimensionality of the channel
matrices, the natural tendency is to think in terms of obtaining a lower
dimensional representation of the channel using deep learning techniques.
However, in this specific problem, we have shown that the analytical
structure of the codebook design problem can be leveraged to develop a far
more efficient shallow learning technique.
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A Useful Resource for ML in Communications

If you are interested in browsing some good papers on machine learning in
communications, please check IEEE ComSoc “Best Readings in Machine Learning
in Communications”. It includes papers on the following topics:

I Signal detection
I Channel encoding and decoding
I Channel estimation, prediction, and compression
I End-to-end communications
I Resource allocation
I Selected topics

The list also includes some overview and tutorial papers.
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