
Machine Learning in Communications
Lecture 4: Statistical Estimation and its Role in

Machine Learning (Classification)

Harpreet S. Dhillon

Wireless@VT, Department of Electrical & Computer Engineering
Virginia Tech, Blacksburg, VA

https://www.dhillon.ece.vt.edu
hdhillon@vt.edu

JTG/IEEE Information Theory Society Summer School
IIT Kanpur



Lecture Objectives

In this lecture, we will complete our discussion of statistical estimation by
covering the classification class. The specific topics are:

I The idea of Bayes classifier.
I The idea of a Naïve Bayes classifier.
I Logistic regression and its underlying generative model.
I Connection between logistic regression and Naïve Bayes classifier.
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Bayes Classifier

I Remember from Lecture 1 that h(x) = E[Y |X = x] minimizes
E[(Y − h(X))2].

I We now do a similar calculation for the classification case (with 0/1
loss model).

I As before, we assume (x, y) ∼ p(x, y).
I Multi-class classification problem: y ∈ {1, 2, · · · , k}.
I We are interested in finding a function g(·) that minimizes the

following expected loss:

E [Loss] = Ep(x,y) [L(y, g(x))]

= Ep(x)

[
k∑
y=1

L(y, g(x))p (y|x)

]
.

I Note that the function g(·) maps x to the set {1, 2, . . . k}.
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Bayes Classifier

E [Loss] = Ep(x)

[
k∑
y=1

L(y, g(x))p (y|x)

]
.

I Because of the assumption of the 0/1 loss function, L(y, g(x)) will
be 0 for one term (for which y = g(x)) and 1 for all the others.

I Therefore, the above expression can be written as

E [Loss] = Ep(x) [1− p(g(x)|x)] .

I As we did before, we can again minimize this expression point wise
to arrive at

ŷ = ĝ(x) = argmax
g

p(g(x)|x).

I This is a Bayes classifier. Note that we are effectively maximizing
the posterior here.

I This is what k-NN directly tries to approximate.
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Bayes Classifier

I So, are we done?
I Not so fast! Since we do not have the true distribution, we cannot

implement the Bayes classifier directly.
I We need to estimate it. Here are two approaches we will study:

I Naïve Bayes: First estimate p(x|y) and p(y), and then apply Bayes
rule to determine p(y|x). It is a generative approach. Naïve because
it approximates p(x|y).

I Logistic regression: We directly estimate p(y|x). This is a
discriminative approach.

I Question: Why do we call the first approach “generative”?
I Let’s start with the generative approach.
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Why Naïve?

I In order to understand this, let’s consider a simple case:
xi ∈ {0, 1},∀i and y ∈ {1, 2, · · · , k}.

I In generative approach, we need to approximate p(y) and p(x|y).
Let’s see how many parameters do we need to estimate these:

I Estimating p(Y = y): we need to estimate k − 1 parameters, i.e.,
{p1, p2, · · · , pk−1}, since pk will be simply 1−

∑k−1
m=1 pm.

I Estimating p (X1 = x1, X2 = x2, · · · , Xd = xd|Y = y): we need to
estimate

(
2d − 1

)
k to characterize this distribution. In particular, for

every y, we need to learn 2d − 1 parameters. This is clearly not
feasible even for small values of d.
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Naïve Bayes

I Naïve Bayes makes the following conditional independence
assumption:

p(X1 = x1, X2 = x2, · · · , Xd = xd|Y = y) =

d∏
i=1

p(Xi = xi|Y = y).

I We observe from above that p(Xi = xi|Y = y) needs to be
estimated. Since p(Xi = xi|Y = y) is binary distribution, it can be
characterized by estimating just one parameter.

I Thus, we need to estimate d parameters for each Y = y, and hence
the total number of parameters to be estimated is kd, which seems
to be doable compared to (2d − 1)k.

I We will revisit Naïve Bayes when we explore its connection with
Logistic regression shortly.

I Let’s first introduce Logistic regression.
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Logistic Regression: Setup

I For logistic regression, we consider the following problem setting:
I The features vector: x ∈ Rd. Dataset of feature vectors: X.
I The output: y ∈ {0, 1}.
I The distribution of the output conditioned on the features vector:
y|x ∼ Ber(θx).

I The objective is to characterize p(y|x), i.e., we need to estimate θx
for every x.

I Can we directly use θx as θ̂x = βTx? Clearly no. Not confined to
[0, 1].

I This can be achieved by using the sigmoid function:
σ(z) = 1

1+exp(−z) .
I The distribution of the output conditioned on the features vector is

now given by: y|x ∼ Ber
(
σ
(
βTx

))
.
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Logistic Regression

I Using the sigmoid function, we get the following form for the
posterior

p(y = 1|x) = θ̂x = σ(βTx) =
1

1 + exp (−βTx)
,

p(y = 0|x) = 1− θ̂x = 1− σ(βTx) = 1

1 + exp (βTx)
,

where our objective reduces to the estimation of the parameters β
from the data.

I For prediction, we just need to know which probability in larger, i.e.,
p(y = 1|x) or p(y = 0|x).
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Logistic Regression

I Under this setup, our predicted output ŷ will be 1 if the following
condition holds:

p(y = 1|x)
p(y = 0|x

≥ 1

⇒log

 1
1+exp(−βTx)

exp(−βTx)
1+exp(−βTx)

 ≥ 0

⇒log

[
1

exp (−βTx)

]
≥ 0

⇒βTx ≥ 0.

I We get a linear classifier.
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Logistic Regression: Learning Parameters

Let us recall that we have the following problem setting:
I Model: y|x ∼ Ber(θx).
I Dataset: {(x1, y1) , (x2, y2) , · · · , (xn, yn)}.
I p(y = 1|x) = θx = 1

1+exp(−βTx)
.

I First goal: β̂ML = arg max
β

p(y|X,β).

I Let’s first write the likelihood function:

p(y|X,β) =
n∏
i=1

θyixi
(1− θxi

)1−yi
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Logistic Regression: Log Likelihood
The log likelihood can be expressed as

LL(β) =

n∑
i=1

[yilog (θxi
) + (1− yi) log (1− θxi

)]

=

n∑
i=1

[
yilog

(
1

1 + exp (−βTxi)

)
+ (1− yi) log

(
1

1 + exp (βTxi)

)]

=

n∑
i=1

[
yilog

(
exp

(
βTxi

)
1 + exp (βTxi)

)
+ (1− yi) log

(
1

1 + exp (βTxi)

)]

=

n∑
i=1

[
yilog

(
exp

(
βTxi

))
− log

(
1 + exp

(
βTxi

))]
=

n∑
i=1

[
yiβ

Txi − log
(
1 + exp

(
βTxi

))]
.

Concave function in β. Use gradient descent on −LL(β).
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Logistic Regression: MAP Case

I After completing ML estimator, our next step is to do MAP
estimator.

I The MAP estimator can be obtained as follows

β̂MAP = arg max
β

log (p (β|y,X))

= arg max
β

[log (p (y|β,X)) + log (p(β))] ,

where we use Gaussian prior β ∼ N
(
0, σ2

oI
)
, i.e., we have

p(β) =

d∏
j=1

1√
2πσ2

o

exp

(
−β2

j

2σ2
o

)
.
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Logistic Regression: MAP Case

This gives us:

β̂MAP = arg max
β

n∑
i=1

log (p (yi|β,xi)) +
d∑
j=0

log (p(βj))

= arg max
β

n∑
i=1

log (p (yi|β,xi)) +
d∑
j=0

−β2
j

2σ2
o

− 1

2
log
(
2πσ2

o

)
︸ ︷︷ ︸
Not function in β


= arg max

β
LL(β)− 1

2σ2
o

‖β‖22 .

As in the case of linear regression, we recover a regularization term.
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Nonlinear Decision Boundaries with Logistic Regression

Remember our discussion on polynomial regression.
Let’s construct a similar example for logistic regression too.
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Connection Between Gaussian NB and Logistic Regression

Now, let’s connect Gaussian Naïve Bayes to logistic regression. We
consider the following setting:

I Y = y ∈ {0, 1}.
I p(Y = 1) = θ and p(Y = 0) = 1− θ.
I Naïve Bayes: p(x|y) =

∏d
j=1 p(xj |y).

I The distribution of the jth feature xj conditioned on the ith label yi
is normal with mean µji and variance σ2

j , i.e.,
p (xj |Y = yi) = N

(
µji, σ

2
j

)
.
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Connection Between Gaussian NB and Logistic Regression

For this setting, we derive p(y = 1|x) as follows

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x)

=
p(x|y = 1)p(y = 1)∑

y p(x|y)p(y)

=
1

1 + p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

.
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Connection Between Gaussian NB and Logistic Regression

Taking the exp log for the term in the denominator of the above
expression, we get

p(y = 1|x) = 1

1 + exp
[
log
(
p(x|y=0)p(y=0)
p(x|y=1)p(y=1)

)]
=

1

1 + exp
[
log
(
p(x|y=0)
p(x|y=1)

)
+ log

(
p(y=0)
p(y=1)

)]
=

1

1 + exp

log
∏d

j=1

p(xj |y = 0)

p(xj |y = 1)︸ ︷︷ ︸
τ

+ log
(
1−θ
θ

)
.
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Connection Between Gaussian NB and Logistic Regression

Now let’s look at the term τ carefully:

τ =
p(xj |y = 0)

p(xj |y = 1)
=

1√
2πσ2

j

exp
(
−(xj−µj0)

2

2σ2
j

)
1√
2πσ2

j

exp
(
−(xj−µj1)

2

2σ2
j

) .
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Connection Between Gaussian NB and Logistic Regression
Taking the log of the above expression, we get

log (τ) =
− (xj − µj0)2

2σ2
j

+
(xj − µj1)2

2σ2
j

=
−x2j − µ2

j0 + 2xjµj0 + x2j + µ2
j1 − 2xjµj1

2σ2
j

=

(
2µj0 − 2µj1

2σ2
j

)
xj︸ ︷︷ ︸

Linear

+
µ2
j1 − µ2

j0

2σ2
j︸ ︷︷ ︸

Constant

= −

(
2µj1 − 2µj0

2σ2
j

)
︸ ︷︷ ︸

βj

xj − Constant.

Using this, we recover the logistic regression form:

p(y = 1|x) = 1

1 + exp (−βTx)
.
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Summary

This concludes our discussion on statistical estimation and its role in
machine learning.
Today’s lecture focused on the estimation problem. Specifically, we
covered:

I The idea of Bayes classifier.
I The idea of a Naïve Bayes classifier.
I Logistic regression and its underlying generative model.
I Connection between logistic regression and Naïve Bayes classifier.
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