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Lecture Objectives

I Introduce the basics of unsupervised learning required for our case study in
Lecture 6.

I We will focus on the k-means algorithm and its interpretation.
I Time permitting, we will also introduce the Gaussian mixture model.
I Density estimation and other related topics will be covered in Lecture 7.
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Unsupervised Learning

I Unlike supervised learning, we are now given an “unlabelled dataset” X with
no corresponding supervising outputs or labels.

I The learning problem is not as “concretely” defined as the supervised
learning case.

I Examples of unsupervised learning:
I Clustering
I Dimensionality reduction
I Density estimation (useful for outlier detection)

I Reference: Kevin Murphy’s MLPP.
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k-means Clustering: Introduction

I As the name suggests, the general idea is to “cluster” similar samples.
I A measure of distance (or similarity) is required.

I Easy to visualize in the Euclidean domain. We will use squared distance for
our discussion but other distance metrics can of course be used as well.

I May need a little more care in non-Euclidean spaces (Lecture 6).
I We will assume that k (number of clusters) is given.
I Initially, we will consider “hard” assignment, i.e., each point is assigned to

one cluster. We will generalize this when we introduce mixture models.
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k-means Clustering: Procedure

I Procedure:
I For a given k, initialize the “centers” of k clusters.
I Then assign each point of the dataset to its closest cluster center.
I Define the new center of a given cluster as the centroid of the points

attached to it.
I Repeat the procedure until there is no change in the assignment.

I As we will see shortly, k-means can be interpreted as an approximate
solution to a meaningful objective function.

H. S. Dhillon 4/13



k-means Clustering: Example
10.3 Clustering Methods 389

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

FIGURE 10.6. The progress of the K-means algorithm on the example of Fig-
ure 10.5 with K=3. Top left: the observations are shown. Top center: in Step 1
of the algorithm, each observation is randomly assigned to a cluster. Top right:
in Step 2(a), the cluster centroids are computed. These are shown as large col-
ored disks. Initially the centroids are almost completely overlapping because the
initial cluster assignments were chosen at random. Bottom left: in Step 2(b),
each observation is assigned to the nearest centroid. Bottom center: Step 2(a) is
once again performed, leading to new cluster centroids. Bottom right: the results
obtained after ten iterations.

initial configurations. Then one selects the best solution, i.e. that for which
the objective (10.11) is smallest. Figure 10.7 shows the local optima ob-
tained by running K-means clustering six times using six different initial
cluster assignments, using the toy data from Figure 10.5. In this case, the
best clustering is the one with an objective value of 235.8.
As we have seen, to perform K-means clustering, we must decide how

many clusters we expect in the data. The problem of selecting K is far from
simple. This issue, along with other practical considerations that arise in
performing K-means clustering, is addressed in Section 10.3.3.

[ISL Fig. 10.6] Example of k-means clustering.
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k-means Clustering: Parameters of Interest

I Given: k
I Dataset: X = {xi}ni=1

I Parameters to be estimated:
I Cluster centers: {µj}ki=1, where each µj ∈ Rd.
I Assignment of points to clusters: {ci}ni=1, where each ci ∈ {1, 2, . . . k}.
I Equivalent assignment parameter: {aij}, where 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Here aij = 1 if ith point is assigned to the jth cluster center and 0 otherwise.
I Assignment step: ci = argminj ‖xi − µj‖2.
I Recentering step: µj =

∑
i aijxi∑
i aij
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k-means Clustering: Interpretation

I It can be argued that k means clustering algorithm (approximately)
minimizes the below objective function:

1

n

n∑

i=1

‖xi − µci‖2.

I It is useful to think of this objective function in terms of data compression or
quantization.

I For instance, we may have applications where xi may be represented by its
“quantized” value µci . This will be the case in Lecture 6.

I Therefore, k-means (approximately) minimizes average distortion introduced
by the quantization process.
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k-means Clustering: Interpretation
I Let’s think in terms of coordinate gradient descent (will provide approximate

solution for our objective function).
I Fix µj, and optimize {ci} or equivalently {aij}:

min
{ci}

1

n

n∑

i=1

‖xi − µci‖2 =
1

n

n∑

i=1

min
ci
‖xi − µci‖2

This is just the assignment step.
I Now fix {aij} and optimize µj:

min
{µj}

k∑

j=1

n∑

i=1

1

n
aij‖xi − µj‖2 =

k∑

j=1

min
µj

n∑

i=1

1

n
aij‖xi − µj‖2

This is just the centroid (or recentering) step.
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Shortcomings of k-means

I In order to understand the shortcomings of k-means (or the implicit
assumptions made about the clusters), it will be useful to interpret it in
terms of a specific Gaussian mixture model (GMM), which is our next topic.

I This will naturally lead us to soft assignments, density estimation, and
expectation maximization.

I We will just introduce the GMM today and do the rest in Lecture 7.
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Gaussian Mixture Model
I Let’s introduce a latent variable zi for every data sample. It gives us the

probability with which a given point was sampled from a specific Gaussian.
I zi ∈ {1, 2, . . . , k} with p(zi = j) = πj .

I Likelihood: p(xi|zi = j) = pj(xi), where pj = N (µj,Σj) is the distribution
of the jth Gaussian.

I Mixture: It is called a mixture model because:

p(xi|θ) =
k∑

j=1

p(xi, zj|θ) =
k∑

j=1

p(xi, |θ, zj)πj

=
k∑

j=1

pj(xi|θ)πj

I Mixture of k base Gaussians.
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Gaussian Mixture Model: Illustration

11.2. Mixture models 339

p(xi|zi) p(zi) Name Section
MVN Discrete Mixture of Gaussians 11.2.1
Prod. Discrete Discrete Mixture of multinomials 11.2.2
Prod. Gaussian Prod. Gaussian Factor analysis/ probabilistic PCA 12.1.5
Prod. Gaussian Prod. Laplace Probabilistic ICA/ sparse coding 12.6
Prod. Discrete Prod. Gaussian Multinomial PCA 27.2.3
Prod. Discrete Dirichlet Latent Dirichlet allocation 27.3
Prod. Noisy-OR Prod. Bernoulli BN20/ QMR 10.2.3
Prod. Bernoulli Prod. Bernoulli Sigmoid belief net 27.7

Table 11.1 Summary of some popular directed latent variable models. Here “Prod” means product, so
“Prod. Discrete” in the likelihood means a factored distribution of the form

∏
j Cat(xij |zi), and “Prod.

Gaussian” means a factored distribution of the form
∏

j N (xij |zi). “PCA” stands for “principal components
analysis”. “ICA” stands for “indepedendent components analysis”.
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Figure 11.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each
component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a).
Figure generated by mixGaussPlotDemo.

11.2.1 Mixtures of Gaussians

The most widely used mixture model is the mixture of Gaussians (MOG), also called a Gaussian
mixture model or GMM. In this model, each base distribution in the mixture is a multivariate
Gaussian with mean µk and covariance matrix Σk . Thus the model has the form

p(xi|θ) =
K∑

k=1

πkN (xi|µk,Σk) (11.2)

Figure 11.3 shows a mixture of 3 Gaussians in 2D. Each mixture component is represented by a
di!erent set of eliptical contours. Given a su"ciently large number of mixture components, a
GMM can be used to approximate any density defined on RD .

[MLPP Figure 11.3] A mixture of three Gaussians in 2D.
Keep in mind that this is our “model” and is not how the data was actually
generated.
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Clustering using Mixture Models

General idea: Fit the mixture model to the data and compute the posterior
probability that the point belongs to cluster j (also called responsibility):

rij = p(zi = j|xi,θ) =
p(zi = j|θ)p(xi|zi = j,θ)∑k
j=1 p(zi = j|θ)p(xi|zi = j,θ)

I This is soft clustering.
I Hard clustering can be done by:

z∗i = argmax
j
rij.
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Summary

I In this short lecture, we introduced the idea of unsupervised learning.
I We looked at the k-means and one of its interpretations.
I We also introduced GMM. We will build on this discussion in Lecture 7.
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