
Machine Learning in Communications
Lecture 7: Density Estimation using GMM and

Expectation Maximization

Harpreet S. Dhillon

Wireless@VT, Bradley Department of Electrical & Computer Engineering
Virginia Tech, Blacksburg, VA

https://www.dhillon.ece.vt.edu
hdhillon@vt.edu

JTG/IEEE Information Theory Society Summer School
IIT Kanpur

Lecture Objectives

I Today, we will capture clustering in data by modeling it using GMMs.
I Once we model the data using a GMM, the problem reduces to determining

the parameters of the model.
I These parameters are determined using extremely useful idea of expectation

maximization.
I Along the way, we will also connect GMMs to the k-means algorithm.
I Reference: Kevin Murphy’s MLPP.

H. S. Dhillon 1/14

Density Estimation: Problem Setup
I Problem: For a given dataset: X = {xi}ni=1, fit xi ∼ p(xi).
I We model p(xi) as a mixture of Gaussians. Most of our discussion in this

lecture will also be applicable to general mixture models.
I Let’s recall our notation from the last module:

I Latent variable: zi ∈ {1, 2, . . . , k} with p(zi = j) = πj .
I Likelihood: xi|{zi = j} ∼ N (µj ,Σj) is the pdf of the jth Gaussian.

p(xi|zi = j) =
1√

(2π)d |Σj |
exp

(
−1

2
(xi − µj)

TΣ−1j (xi − µj)

)

I Objective: Estimate the following parameters:

θ = {π,
{
µj}kj=1, {Σj}kj=1

}

I Let’s discuss maximum likelihood estimation for this problem next.

H. S. Dhillon 2/14

Gaussian Mixture Model: Maximum Likelihood Estimation
I The ML estimate for this problem is:

θ∗ = argmax
θ

n∑

i=1

log p(xi|θ)

= argmax
θ

n∑

i=1

log
k∑

j=1

p(xi, zi = j|θ)

I The log-sum form is problematic. We don’t get nice factors as before.
I In order to understand this, let’s assume for the sake of the argument that

we had labelled data {(xi, zi)}, i.e., zi is not “latent”. The ML estimate in
this case is:

θ∗ = argmax
θ

n∑

i=1

log p(xi|zi,θ) +
n∑

i=1

log p(zi|θ)

I Problem becomes easier when we have “complete data”. We will use this fact.

H. S. Dhillon 3/14

One Way to Get Rid of Log-Sum Form: Hard Assignment
I Let’s assume hard assignment of points to clusters (like in k-means):

p(xi, zi = j) =

{
p(xi, zi = ci) j = ci
0 o.w.

I In order to make the connection of GMM with k-means even more concrete,
let’s consider the following two additional assumptions:

I p(zi = j) = πj =
1
k ,∀j

I Assume “spherical” Gaussians:

Σj = Σ =



σ2 . . . 0
...

. . .
...

0 . . . σ2




I This gives us

p(xi|zi = j) =
1

(2πσ2)
d
2

exp

(
−‖xi − µj‖2

2σ2

)

H. S. Dhillon 4/14

Log Likelihood under these Assumptions

I ML estimate for this case is:

θ∗ = argmax
θ

n∑

i=1

log p(xi|θ) = argmax
θ

n∑

i=1

log
k∑

j=1

p(xi, zi = j|θ)

= argmax
θ

n∑

i=1

log p(xi, zi = ci|θ) = argmax
θ

n∑

i=1

log p(xi|zi = ci,θ)πci

= argmax
θ
− 1

n

n∑

i=1

‖xi − µci‖2
2σ2

I Recall that this is just the (negative of) average distortion that we
approximately minimized using k-means. Now you know the implicit
assumptions made while using k means algorithm.

H. S. Dhillon 5/14

Expectation Maximization: General Idea

I Very useful algorithm for density estimation.
I No need to make any assumptions along the lines of what we just did for
k-means.

I It is also applicable to general mixture models (beyond GMM).
I Here is the general idea:

I E step: Find soft assignment of points to Gaussians, p(zi = j|xi,θ), so that
we can write Expected Complete Data Log Likelihood.

I This just assigns soft labels to the data. This is said to “complete” the data.
I M step: Maximize this expected log likelihood to update parameters.

I It is natural to wonder why do we take expectation of the log here. We will
understand this soon.

H. S. Dhillon 6/14

Expectation Maximization: Steps
I Let’s first understand how EM works.
I Step 0: Initialize θ as θ(0) =

{
π(0), {µ(0)

j }kj=1, {Σ(0)
j }kj=1

}
.

I E step: At time t, we have θ(t). Given this, find the assignment probability
of ith point to the jth Gaussian:

a
(t)
ij = p(zi = j|xi,θ

(t)) =
p(xi, zi = j|θ(t))

p(xi|θ(t))

=
p(zi = j|θ(t))p(xi|zi = j,θ(t))∑k
j=1 p(zi = j|θ(t))p(xi|zi = j,θ(t))

I Since p(zi = j|θ(t)) = πj and p(xi|zi = j,θ(t)) is N (µj,Σj), we have
everything that we need to compute a(t)ij for a given θ(t).

I This gives us soft assignments of points to Gaussians and thus completes
our data.

H. S. Dhillon 7/14

Expectation Maximization: Steps
I M step: From the E-step, we get the expected (complete data) log

likelihood. Assuming the assignments to be fixed a(t)ij , we determine θ(t+1)

by maximizing the expected log likelihood as:

θ(t+1) = argmax
θ

n∑

i=1

k∑

j=1

a
(t)
ij log p(xi, zi = j|θ)

I This reduces the problem to MLE with Gaussians:

π̂
(t+1)
j =

∑n
i=1 a

(t)
ij∑n

i=1

∑k
j=1 a

(t)
ij

=
1

n

n∑

i=1

a
(t)
ij

µ̂
(t+1)
j =

∑n
i=1 a

(t)
ij xi

∑n
i=1 a

(t)
ij

Σ̂
(t+1)
j =

∑n
i=1 a

(t)
ij (xi − µ̂(t+1)

j)(xi − µ̂(t+1)
j)T

∑n
i=1 a

(t)
ij

H. S. Dhillon 8/14

Expected Log Likelihood is a (Special) Lower Bound

I Recall the M step from the previous slide:

θ(t+1) = argmax
θ

n∑

i=1

k∑

j=1

p(zi = j|xi,θ
(t))︸ ︷︷ ︸

a
(t)
ij

log p(xi, zi = j|θ(t))

I Now, let’s revisit our original objective function:

θ∗ = argmax
θ

n∑

i=1

log
k∑

j=1

p(xi, zi = j|θ)

H. S. Dhillon 9/14

Applying Jensen’s Inequality

Consider a generic distribution qi = {qi(j)} and express the original objective as

θ∗ = argmax
θ

n∑

i=1

log
k∑

j=1

p(xi, zi = j|θ)qi(j)
qi(j)

= argmax
θ

n∑

i=1

logEqi

p(xi, zi = j|θ)
qi(j)︸ ︷︷ ︸

≥Eqi
log

p(xi,zi=j|θ)
qi(j)

by Jensen′s Inequality

Let’s look at this lower bound carefully next. The idea is select qi = {qi(j)} that
provides the tightest lower bound.

H. S. Dhillon 10/14

Lower Bound

Here is the lower bound on the original likelihood that we derived using Jensen’s
inequality:

n∑

i=1

k∑

j=1

qi(j) log
p(xi, zi = j|θ)

qi(j)

=
n∑

i=1

k∑

j=1

qi(j) log
p(zi = j|xi,θ)

qi(j)
︸ ︷︷ ︸

−KL(qi‖p(zi|xi,θ))

+
n∑

i=1

k∑

j=1

qi(j) log p(xi|θ)
︸ ︷︷ ︸∑n

i=1 log p(xi|θ) Original Objective

The first term goes to zero when we select qi(j) = p(zi = j|xi,θ) = aij. This
will give us the tightest lower bound, which will touch the original objective.

H. S. Dhillon 11/14

Lower Bound is Expected Complete Data Log Likelihood
Our lower bound from the previous slide was

n∑

i=1

k∑

j=1

qi(j) log
p(xi, zi = j|θ)

qi(j)

=
n∑

i=1

k∑

j=1

qi(j) log p(xi, zi = j|θ)−
n∑

i=1

k∑

j=1

qi(j) log qi(j)

The second term can be ignored when we do arg max since it does not depend
upon θ. The first term is our Expected Log Likelihood when we substitute
qi(j) = aij from the previous slide. This recovers the M step:

θ(t+1) = argmax
θ

n∑

i=1

k∑

j=1

aij log p(xi, zi = j|θ)

H. S. Dhillon 12/14

Expectation Maximization: Illustration of the Lower Bound
11.4. The EM algorithm 365

Q(θ,θ
t
)

Q(θ,θ
t+1

)

l(θ)

θ
t
θ

t+1
θ

t+2

Figure 11.16 Illustration of EM as a bound optimization algorithm. Based on Figure 9.14 of (Bishop 2006a).
Figure generated by emLogLikelihoodMax.

where the first inequality follows since Q(θ, ·) is a lower bound on !(θ); the second inequality
follows since, by definition, Q(θt+1, θt) = maxθ Q(θ, θt) ≥ Q(θt, θt); and the final equality
follows Equation 11.93.

As a consequence of this result, if you do not observe monotonic increase of the observed
data log likelihood, you must have an error in your math and/or code. (If you are performing
MAP estimation, you must add on the log prior term to the objective.) This is a surprisingly
powerful debugging tool.

11.4.8 Online EM

When dealing with large or streaming datasets, it is important to be able to learn online, as
we discussed in Section 8.5. There are two main approaches to online EM in the literature.
The first approach, known as incremental EM (Neal and Hinton 1998), optimizes the lower
bound Q(θ, q1, . . . , qN) one qi at a time; however, this requires storing the expected su!cient
statistics for each data case. The second approach, known as stepwise EM (Sato and Ishii 2000;
Cappe and Mouline 2009; Cappe 2010), is based on stochastic approximation theory, and only
requires constant memory use. We explain both approaches in more detail below, following the
presentation of (Liang and Klein Liang and Klein).

11.4.8.1 Batch EM review

Before explaining online EM, we review batch EM in a more abstract setting. Let φ(x, z) be a
vector of su!cient statistics for a single data case. (For example, for a mixture of multinoullis,
this would be the count vector a(j), which is the number of cluster j was used in z, plus the
matrix B(j, v), which is of the number of times the hidden state was j and the observed letter
was v.) Let si =

∑
z p(z|xi, θ)φ(xi, z) be the expected su!cient statistics for case i, and

µ =
∑N

i=1 si be the sum of the ESS. Given µ, we can derive an ML or MAP estimate of the
parameters in the M step; we will denote this operation by θ(µ). (For example, in the case of
mixtures of multinoullis, we just need to normalize a and each row of B.) With this notation
under our belt, the pseudo code for batch EM is as shown in Algorithm 8.

[MLPP Figure 11.16] Illustration of EM.

H. S. Dhillon 13/14

Summary

With this lecture, we conclude our discussion of the basics of unsupervised
learning. We will go over a case study on distributed learning in wireless networks
in the next lecture. In this lecture, we have covered:

I Gaussian mixture models.
I Interpretation of k means in terms of a specific GMM.
I Density estimation using expectation maximization.

H. S. Dhillon 14/14

