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Lecture Objectives

Introduce the basics of unsupervised learning required for our case study in
Lecture 6.
We will focus on the k-means algorithm and its interpretation.

Time permitting, we will also introduce the Gaussian mixture model.

v

v

v

Density estimation and other related topics will be covered in Lecture 7.

v
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Unsupervised Learning

v

Unlike supervised learning, we are now given an “unlabelled dataset” X with
no corresponding supervising outputs or labels.

v

The learning problem is not as “concretely” defined as the supervised
learning case.

v

Examples of unsupervised learning:
» Clustering
» Dimensionality reduction
» Density estimation (useful for outlier detection)

Reference: Kevin Murphy's MLPP.

v
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k-means Clustering: Introduction

v

As the name suggests, the general idea is to “cluster” similar samples.

v

A measure of distance (or similarity) is required.
» Easy to visualize in the Euclidean domain. We will use squared distance for
our discussion but other distance metrics can of course be used as well.
» May need a little more care in non-Euclidean spaces (Lecture 6).

v

We will assume that k& (number of clusters) is given.

v

Initially, we will consider “hard” assignment, i.e., each point is assigned to
one cluster. We will generalize this when we introduce mixture models.
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k-means Clustering: Procedure

» Procedure:
» For a given k, initialize the “centers” of k clusters.
» Then assign each point of the dataset to its closest cluster center.

» Define the new center of a given cluster as the centroid of the points
attached to it.

» Repeat the procedure until there is no change in the assignment.

» As we will see shortly, k-means can be interpreted as an approximate
solution to a meaningful objective function.
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k-means Clustering: Example
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[ISL Fig. 10.6] Example of k-means clustering
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k-means Clustering: Parameters of Interest

Given: k
Dataset: X = {x;}";
Parameters to be estimated:

v

v

v

» Cluster centers: {u;}* |, where each p; € RY.

» Assignment of points to clusters: {c;}' ;, where each ¢; € {1,2,...k}.

» Equivalent assignment parameter: {a;;}, where 1 <i<nand1<j<k.
Here a;; = 1 if i*" point is assigned to the j** cluster center and 0 otherwise.

» Assignment step: ¢; = argmin; ||a; — ;.
. . 20 @i
» Recentering step: p; = ziajij
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k-means Clustering: Interpretation

» It can be argued that & means clustering algorithm (approximately)
minimizes the below objective function:

1 n
=3l e
=1

» It is useful to think of this objective function in terms of data compression or
quantization.

» For instance, we may have applications where x; may be represented by its
“quantized” value p.,. This will be the case in Lecture 6.

» Therefore, k-means (approximately) minimizes average distortion introduced
by the quantization process.
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k-means Clustering: Interpretation

» Let's think in terms of coordinate gradient descent (will provide approximate
solution for our objective function).

» Fix p;, and optimize {¢;} or equivalently {a;;}:

I~ . )
mm—Zsz pe [P = = jmin||z; — pa,
i=1

This is just the assignment step.

» Now fix {a;;} and optimize p;:

k n
. 1 9
min E E aUH% will® = E min g —allz; — py|
=

{I“’J}j 1 i=1

This is just the centroid (or recentering) step.
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Shortcomings of k-means

» In order to understand the shortcomings of k-means (or the implicit
assumptions made about the clusters), it will be useful to interpret it in
terms of a specific Gaussian mixture model (GMM), which is our next topic.

» This will naturally lead us to soft assignments, density estimation, and
expectation maximization.

» We will just introduce the GMM today and do the rest in Lecture 7.

9/13

W VIRGINIA H. S. Dhillon
TECH



Gaussian Mixture Model

» Let's introduce a latent variable z; for every data sample. It gives us the
probability with which a given point was sampled from a specific Gaussian.

» 2z €{1,2,...,k} with p(z; = j) = ;.
» Likelihood: p(x;|z; = j) = p;j(x;), where p; = N (u;,3;) is the distribution
of the j** Gaussian.

» Mixture: It is called a mixture model because:
p(x;|0) = Zp x;, 2;|0) = Z (x:,10, z;)m;
j=1
= ij(%w)ﬁ
j=1

» Mixture of k base Gaussians.
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Gaussian Mixture Model: Illustration

[MLPP Figure 11.3] A mixture of three Gaussians in 2D.
Keep in mind that this is our “model” and is not how the data was actually
generated.
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Clustering using Mixture Models

General idea: Fit the mixture model to the data and compute the posterior
probability that the point belongs to cluster j (also called responsibility):

Tij—p(zz'—ﬂmia )— & ) .
> i1 Pz = j|0)p(wi| 2 = 5, 0)

» This is soft clustering.

» Hard clustering can be done by:

* pa—
zZ; = arg rnjax Tij-
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Summary

» In this short lecture, we introduced the idea of unsupervised learning.
» We looked at the k-means and one of its interpretations.
» We also introduced GMM. We will build on this discussion in Lecture 7.
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