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Lecture Objectives

After covering the basics of machine learning in the previous lecture, we will now start our
discussion on the role of machine learning in communications.

» Building directly on the previous lecture, we will start with a signal detection example to
reinforce the importance of the choice of appropriate loss function and performance
measure.

» We will then discuss some potential classes of communications problems that will benefit
from machine learning.

» We will conclude with a case study on Determinantal Learning for Wireless Networks.
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Binary Classification on an Unbalanced Dataset

v

Lets assume that each point in our training set has a binary label.

v

Assume further that one of the labels occurs very infrequently.
» Think of a signal detection problem assuming that the message is transmitted very
infrequently.
» In many such problems, it is more detrimental if we miss a signal than if we detect a signal
that was not there (false negatives are more critical than false positives).

v

Consider the classical example of a medical dataset.
» Assume that the binary label signifies whether a given patient has a disease or not.
> It is really critical to detect correctly when a patient has that disease. Otherwise, the
treatment may get delayed.
» On the contrary, if we misclassify a healthy person as having that disease, it is “relatively”
easy to handle it (e.g., run more tests).
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Binary Classification - Choice of Loss Function
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For the reasons that we already discussed, we may want to put a larger loss for fn. Therefore,
simply 0-1 loss function will not work in this case.
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Binary Classification - Measuring Accuracy

» Consider a dataset in which only 0.1% of patients have a disease and the rest are healthy.
Note that you can easily map this to the signal detection problem as well.

» You propose an algorithm that gives a 99.5% accuracy. Accuracy here is defined as the
percentage of points that were correctly classified.

» Is this a good algorithm?

» What about a trivial algorithm that predicts that no one has a disease? In other words,
7; = 0,Vi. What is the accuracy of this algorithm?

» Why is this performing better than your algorithm?
> Takeaway: We need to be more careful with how we measure accuracy.
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Binary Classification - ROC
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> Remember the dependence of Ratey, and Ratey, in a signal detection problem on the

signal detection threshold.
» The practical classifier curve is obtained by changing this threshold.
» This is called Receiver Operating Characteristics (ROC) curve and is one of the standard
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tools used in machine learning to characterize the performance of classifiers.
H. S. Dhillon
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First a Note on Artificial Neural Networks
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Communications Problems that can benefit from ML

» Remember from the first lecture that for a ML problem to be meaningful, you need (i)
some pattern to learn, (ii) data to learn from, and (jii) it should not be possible to
describe that pattern mathematically.

» Given this, here are the type of problems that will benefit from ML:

» Some algorithms may be prohibitively complex for real-time implementation. Can we come
up with ML-based solutions? Case study today.

» Mathematical models are inadequate or incomplete to describe the data. Case study on Day
3.

» Data-driven applications, such as edge learning. Case study on Day 4.

In which problems would ML not make sense? Let's see next.
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QPSK Example- |

P A received signal r

E. Bjoérnson, P. Giselsson, “Two Applications of Deep Learning in the Physical Layer of Communication
Systems”, IEEE Signal Processing Magazine, Sept. 2020.
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QPSK Example - I
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Detection: 01
4

Detection: 01
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E. Bjornson, P. Giselsson, “Two Applications of Deep Learning in the Physical Layer of Communication
Systems”, IEEE Signal Processing Magazine, Sept. 2020.
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Case Study: Determinantal Learning for Wireless Networks

CLASSICAL MACHINE LEARNING
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Stochastic geometry is model driven approach, ML is data-driven approach.

C. Saha and H. S. Dhillon, “Machine Learning meets Stochastic Geometry: Determinantal Subset Selection for
Wireless Networks”, in Proc. IEEE Globecom, Waikoloa, HI, Dec. 2019.
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.but there is a connection

» Determinantal point process (DPP): used as a repulsive point process to model the
locations of macro base stations in a cellular network™*.

(a) Houston data set (b) LA data set

Fig. 1: Real macro BS deployments.

(a) Gauss DPP (b) Cauchy DPP (¢) Generalized Gamma DPP

» DPP is also used in ML as a probability model for subset selection.

*Y. Li, F. Baccelli, H. S. Dhillon and J. G. Andrews, “Statistical Modeling and Probabilistic Analysis of Cellular Networks with Determinantal
Point Processes’, IEEE Trans. on Commun., vol. 63, no. 9, pp. 3405-3422, Sep. 2015
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Discrete point processes

[ N .
Y e 0" @ » Consider a ground set
papion P a e a =0.02 of N items,
eeeee e y={1,2,...,N}
::::: > Power set: 2Y
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P p =001 selection model is a
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: on 2%,
Example: Independent point process
» Each element i is included with probability p;

PY)=[]w []C0—p)

i€y gy
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DPP

DPPs are probabilistic models that quantify the likelihood of selecting a subset of items as the
determinant of a kernel matrix (K).
Definition 1: K-matrix formulation

» Consider a ground set of N items, Y = {1,2,...,N}
» DPP is a probability measure on the power set 2¥
» A random subset Y follows a DPP if P(A C Y) = det(K ), where K4 = [K; ;i jea
» K is positive semidefinite with K < T
L-ensemble formulation of DPP
» A DPP is alternatively defined in terms of a matrix L (L < I) indexed by Y C Y

PLY) = PUY = ¥) = S

where LY = [Li,j]i,jEY-
» K and L are related as
K=(L+I)"'L
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DPP: Quality-Diversity Tradeoff

v

Say, a; € RY is some vector representation of the i item of ).

Li; = k(a;, a;) = ¢(a;) ' ¢(a;)
k(-,-)= kernel function, ¢ = feature map.

v

v

Quality-diversity decomposition:

Lij = k(ai,a;) = g(a;) X Sij xg(aj),

—~—
quality of a; (Vi € Y  similarity of a; and a; (Vi,j € V,i # j)

v

Pr(Y =Y) x det(Ly) = det(Sy) .r{/g(ai)Q,

ga)/

y P(Y) = {1,2} o Vol({¢(a;)}): (a)
as g(a;) increases, the volume in-
creases, (b) as \S; ; increases, the vol-

ume decreases.

~
.o,
~
~.
~
~.

9(az)

(a) g(a1) increases. (b) Si,2 increases.
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Conditional DPP

% Y(X) Conditional DPP y

Some external  Ground set P(Y =Y|X) xdet(Ly (X)) subset
input (say, an
image)

Example: Image search

Conditional
DPP

Image library

» Similar to the quality-diversity decomposition of DPP,
Lij(X) = g(a;| X) x Si5(X) xg(a;|X).
—— —

quality of item i given X diversity measure of i, j given X
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DPP Learning (DPPL) Framework

Setting quality and diversity measures:

» Log-linear model for the quality measure:
g(ai| X) = exp (0" f(a;| X)),

where f assigns m feature values to a;.

_lag—ay)?

» For S; ;(X), we use the Gaussian kernel: S; ;(X)=e = o2
Learning setup

» Training set: T := (X1,Y1),...,(Xk,Yk), where X}, is the input and Y}, C Y(X}) is the
output.

(0,0%) = arg?;afﬁ(T; 0,0),

where

K K
L(T;0,0) =1log | [ Po.o(VelX) =Y 1ogPo o (Vi Xs),
k=1 k=1

where Py , = P, parameterized by 6§ and o.
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Case Study: Link Scheduling Problem

System Model

» A network with M Tx-Rx pairs with fixed link
distance d.

Active links
1/ %

Inactive links

» Can be represented as a directed bipartite graph
g = {J\/'taNTvg}v
» N; and N, are the independent sets of vertices
denoting the set of Tx-s and Rx-s.
» &:={(t,r)} is the set of directed edges where
teNyand r €N,

> N =[N =18l = M.
Problem Formulation

» A link is active when the Tx transmits at a power level py and is inactive when the Tx
transmits at a power level p; (with 0 < pp < py).

Channel gain

> Cll Pi
— .
o + Zifeg Citpj

Thermal noise power
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Sum-Rate Optimization

» Sum-rate maximization problem:

where {p;}c,cc.
» An optimal subset of simultaneously active links : £* C £ .

procedure SUMRATEMAX(KYY, £)
Tnitialization: given tolerance € > 0, set Py = {p;0}.
Set i = 1. Compute the initial STNR guess 7 = {{"}

repeat
Solve the GP:
0
minimize K [T, " (12a)
subject to §14{) <y < 84", e € €, (126)
A+ Y GG < e e €
J#

(120)
Pl P Y @1 EE. (12d)

with the variables {pi,7}e,cs. Denote the solution by
{177 eree-

until max,ee 1y — 5] < ¢

if pi > pyn then

n=pn

else

D = Pe
return

maximize Z logy, (1 +v1),

e €€

subjected to p; € {ps,pn}

The integer programming problem is
NP hard.

Can be solved iteratively by geometric
programming.

TP. C. Weeraddana, M. Codreanu, M. Lat: h.

review," Foundations and Trends in Networking, vol.
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, A. Ephremides, C

sum-rate imization in networks: A

6, no. 1-2, pp. 1-

163, 2012.

H. S. Dhillon

etal, "’
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DPPL for Link Scheduling

Network
Configuration
X = (g’ ’C/\vy)

=

> g(aZ|X) = exp (01Cllph — 01, — 93[2) s where I = pth/i with

J' =argmax;—1 . r£{(i} and Iy = pn{jr; with j” = argmax;j—1, 12 ;{(;:} are the

Generate optimal schedule

£* = SUMRATEMAX (KXY, €)

Generate training set
7-::{Lxh)q)v"7@KK7Yk)}
1!

Train the DPP kernel to obtain

L(X)
7

Training phase

1,...,

SAMPLEDPP (L(X)) _’@

or
DPPMAP(L(X))
Testing phase

two strongest interfering powers
> S (X) = exp(—([[x(t:) — x(r;) || + [|x(t;) — x(r:)[|*)/0?), where x(t;) and x(r;)
denote the locations of Tx t; € N and Rx r; € N,.

‘v777\HRGHﬂA
TECH

H. S. Dhillon

> KXY u: complete
weighted bipartite
graph on NV, N, with
W(i,j) = (;; for all
1 €Ny, jEN;.

» For the training phase,
Xy = (IC}(VA,NT,E,E*);C.
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Results
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CDF of sum-rate obtained by differ-
ent subset selection schemes.

W VIRGINIA
TECH

10°

1° //

— Algorithm 2
5 —DPP (sampling)
10 DPP (MAP inference)

Normalized run time

—_— T e

5 10 15 20
Number of links (L)

Comparison of run-times of optimal
heuristic and DPPL in testing phase.

H. S. Dhillon
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Trends of Sum-Rate
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Figure: Average rates obtained for different network sizes using DPPL.
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Summary

» Discussed the role of machine learning in communications.
» Today's case study was focused on using machine learning for approximating algorithms.
» We identified a general class of subset selection problems in wireless networks which can
be solved by jointly leveraging machine learning and stochastic geometry.
> Developed the DPPL framework, where the DPP originates from SG and its learning

applications have been fine-tuned by the ML community.
» When applied to a special case of wireless link scheduling, DPP is able to learn the
underlying quality-diversity tradeoff of the optimal subsets of simultaneously active links.
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Matlab code available at: https://github.com/stochastic-geometry/DPPL
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