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Role of Distributed Learning in Wireless Networks

I Conventional ML approaches rely on the assumption of having the data and processing
heads in a single central entity.

I With the increasing number of mobile devices and sensors, the amount of data is
increasing but much of it is of private and distributed in nature.

I Even if we ignore privacy for the sake of argument, it is very inefficient (and in some cases
impossible) to transmit the local data at all the users to the central server (say a base
station) to perform centralized learning.

I Because of these reasons, decentralized learning solutions are especially relevant for
wireless applications.

I Our focus will be on a specific decentralized learning technique, called Federated Learning.
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Federated Learning (FL)

I Federated Learning: An emerging decentralized approach that allows the central server to
collectively reap the benefits of the rich distributed data without the need to centrally
store it where the central model is trained using the aggregated locally-computed updates.

I How does this aggregation of locally trained models at the central server occur?
I FL has unique properties that differentiate it from the other distributed learning

techniques: Data is non-IID, unbalanced, and massively distributed, limited
communication resources.

B. McMahan, et al., “Communication-efficient learning of deep networks from decentralized data," in Artificial
Intelligence and Statistics, PMLR, 2017, pp. 1273-1282.
S. Niknam, H. S. Dhillon and J. H. Reed, “Federated Learning for Wireless Communications: Motivation,
Opportunities, and Challenges”, IEEE Communications Magazine, vol. 58, no. 6, pp. 46-51, Jun. 2020.
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Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
I Let w, B be the model parameters to be optimized and dataset, f(·) be the loss function.

F (w) =
1

B
∑
u∈B

f(w,u)

I The minimization of above loss is typically carried out through iterative gradient descent
(GD), in which the model parameters at the t-th iteration, are updated as

w(t+ 1) = w(t)− η∇F (w), ∇F (w) =
1

B
∑
u∈B
∇f(w,u)

I We need to calculate the gradient ∇F (w) for the whole dataset to perform just one
update of model parameters w, GD can be very slow and intractable for large datasets.

I Unlike GD, SGD calculates gradients for every element of the dataset and updates the
model for each gradient. One update of the model parameters is obtained as

w(t+ 1) = w(t)− ηg(t), g(t) = ∇f(w,u),u ∈ B

I Since the model is updated for every point in the dataset B, the loss function has higher
fluctuations and hence higher variance.
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Gradient Descent (GD) and Stochastic Gradient Descent (SGD)

I There exists another variant of GD technique which is the mini-batch SGD which takes
the best of the worlds of GD and SGD. The model parameters are updated as below where
M is a mini-batch i.e. M⊂ B.

w(t+ 1) = w(t)− ηg(t), g(t) =
1

|M|
∑
u∈M

∇f(w,u)

I Similar to SGD, If the mini-batchM at each iteration is sampled randomly, then the
gradient estimates g(t) are unbiased: E[g(t)] = ∇F (w).

I IfM = B, then mini-batch SGD = GD.
I If |M| = 1, then mini-batch SGD = SGD.
I The mini-batch SGD is sometimes referred to as just SGD.
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Federated Learning Procedure

I Step 1: The distributed users
n = (1, · · · ,K) update local learning
model wn(t) based on the local data
Bn,B =

⋃K
n=1 Bn, with the stochastic

gradients gn(t) obtained using SGD.
I Step 2: The users send the local gradients

gn(t) of the updated local models to the
central server.

I Step 3: The server learns a global model
w(t) by aggregating the received local
updates corresponding to all the users.

I Step 4: The parameters of the updated
global model at the server w(t) are sent
back to all the users to update the local
models for the next iteration t+ 1 i.e.
wn(t+ 1) = w(t+ 1) . Figure: Federated learning procedure.
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Summary of the Federated Learning Procedure

wn(t+ 1) := wn(t)− η gn(t), (1)

g(t) =
1

K

K∑
n=1

gn(t), gs(t) =

K∑
n=1

gn(t) (2)

w(t+ 1) := w(t)− η g(t) (3)

I In Distributed SGD (DSGD), g(t) is updated as g(t) = 1
K

∑K
n=1 gn(t).

I Take-away: For DSGD in FL, it is enough for the server to have the knowledge of
gradient-sum i.e. gs(t) =

∑K
n=1 gn(t) at every training iteration t.
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Connection of FL with Wireless Communication

I We model the medium between the users and the central server as a shared wireless
medium (specifically, a noisy wireless Gaussian MAC channel).

I Let xn(t) ∈ Rd be the signal transmitted by n-th user, n(t) be the AWGN noise at
iteration t, then the signal received at the server is y(t).

y(t) =

K∑
n=1

xn(t) + n(t)

= x(t) + n(t)

M. M. Amiri and D. Gunduz, “Machine learning at the wireless edge: Distributed stochastic gradient descent
over-the-air,” IEEE Trans. on Signal Process., vol. 68, pp. 2155-2169, 2020.
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Our Focus

I Sending gradients and weights back and forth require a lot of wireless resources.
I One solution is to compress these gradients at the clients and reconstruct them at the

server. This will be our focus.
I Our proposed approach will be cognizant of the properties of the gradients being compressed.

I Notation and Assumptions:
I Let fc(·) be the gradient compressor, then xn(t) = fc(gn(t)) is the compressed gradient for

the n-th user.
I We use a linear compressor fc(·). Hence, xn(t) = fc(gn(t)) =⇒ x(t) = fc(g(t)).
I With a linear compressor, the considered gaussian MAC channel model automatically

provides the server with the noisy gradient-sum without needing to transmit gradient of each
user separately.

I Reconstructed gradient at the central server to update the global model: ĝ(t).
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Revisiting the Federated Learning Procedure

Algorithm 1: Pseudo algorithm for FL procedure with DSGD
Initialize: w(0),∆n(0) = 0
for t = 0, · · · , T − 1 do

I devices/users do:
for n = [K]

Compute gn(t) using Bn using SGD.
Compress gn(t) for transmission: xn(t) = fc(gn(t)) ← a step that is of current interest

end for
I Channel does:

y(t) =
∑K

n=1 xn(t) + n(t), xn(t) = fc(gn(t))

I BS/Server performs:
ĝ(t) = g(t) that is reconstructed from y(t) ← a step that is of current interest
w(t+ 1) = w(t)− ηĝ(t)

end for
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Setting up the Problem

I The objective here is to recover gs(t) =
∑K

n=1 gn(t) from
x(t) =

∑K
n=1 xn(t) =

∑K
n=1 f(gn(t)) = fc(g

s(t)) at the server instead of recovering each
gn(t) from xn(t), ∀n = [K]. Here, the compression ratio (CR) is given as

CR =
length(gn(t))

length(fc(gn(t)))
=
N

d

I We now present a technique that compresses and reconstructs the gradient efficiently
(which will be inspired by the key properties of the gradients).

M. Yu, et al., “GradiVeQ: Vector quantization for bandwidth-efficient gradient aggregation in distributed CNN
training,” in Advances in Neural Information Processing Systems, 2018, pp. 5123-5133.
Y. Lin, et al., “Deep gradient compression: Reducing the communication bandwidth for distributed training,”
arXiv preprint arXiv:1712.01887, 2017.
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Properties of Gradients in Neural Networks

The gradients generated during training of a neural network (NN) exhibit following properties:
I Sparsity
I Temporal correlation

Sparsity:
I An empirical observation is that the gradients of a NN are extremely skewed [2,3] with

most of the values close to zero.
I This indicates that there are relatively fewer gradient elements than the actual number

which are important.
I The gradients can be sparsified by removing the gradients that are close to zero (by

absolute value) using a threshold and retaining only important/dominant gradients. This
is referred to as gradient sparsification which has been used widely in the literature.

I We will also be using gradient sparsification here.

Temporal correlation:
I The observed gradients evolve slowly over training iterations, which is due to the steady

gradient directions and step size under reasonable learning rates.
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Convolutional Neural Networks (CNN)

I The above two properties are satisfied for any NN
in general.

I The gradients of a convolutional layer exhibit an
additional property of spatial correlation along
with the sparsity and temporal correlation.

I A convolutional layer applies filters on the input
data to extract features that are relevant to the
application. So, the weights of the filters are the
quantities that are learnt during training of a
CNN.

I The gradient corresponding to a convolutional
layer with F filters as shown in the adjacent figure
can be represented as 4D-tensor
G ∈ RH×W×D×F .

Figure: Each convolutional layer has F
filters of dimension (H,W,D), where
H,W,D is the height, width, depth of
each filter which acts on the input
producing FDWH gradients in every
iteration. We flatten the gradients into a
vector g by placing every F collocated
gradients from all the F filters next to
each other in g. The location selection
traverses depth, width, then height.
Picture taken from [4].
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Spatial Correlation of Convolutional Gradients

Figure: Plot showing a sample gradient G ∈ R25×200

corresponding to convolutional layer of dimension
(5, 5, 10, 20)

Figure: Plot showing the above gradient G sparsified with a
threshold for sparsification at 95 percentile

Figure: Correlation matrix R ∈ R25×25

of G

I A matrix representation of G is G ∈ RHW×FD and the corresponding correlation matrix
R is an HW ×HW matrix containing the pairwise correlation coefficient between each
pair of rows in the HW × FD matrix G.
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Our Objective

I The sparse nature of the gradients indicates that the actual dimension of the gradients is
much smaller than its size. Hence, we can compress the (approximately) sparse gradients
before transmitting.

I The objective of our gradient transmission method is to jointly exploit the sparsity of the
gradients and the spatial correlation in the gradients of the convolutional layer.
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Sparsity and Compressive Sensing (CS)

I CS is signal processing technique used for efficiently acquiring and reconstructing signals
by finding solutions to underdetermined linear systems.

I It is based on the principle that the sparsity of a signal can be exploited to recover it from
far fewer samples than required by the Nyquist-Shannon sampling theorem.

I Let s ∈ RN be a sparse signal which is measured through a matrix A ∈ Rd×N using the
following noisy linear measurement where n is random noise.

y = As + n

I If d < N , then the above system of equations is underdetermined. Although d < N , s can
be reconstructed exactly or approximately if s is sparse.

I Let No be the number of non-zero entries of s, then its sparse ratio (SR) is No/N .
I Sparse signal reconstruction (SSR): The goal of SSR is to recover s from y,A.

Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications. Cambridge University Press,
2012.
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Modeling Convolutional Gradients
I For the Gaussian MAC channel model, we have Gaussian likelihood p(y|s) with the

conditional pdf p(y|s) where σ2I is the co-variance matrix of the zero-mean gaussian
noise vector n. Therefore the likelihood is

p(y|s) = (2πσ2)−
N
2 exp

(
− 1

2σ2
‖y −As‖22

)
I In order to model the sparsity of the gradients, we assume a spike and slab prior on

s = [s1, · · · , sN ] (a sparsity-promoting prior) with the following joint pdf on s.

p(s) =

N∏
i=1

p(si) =

N∏
i=1

[(1− λi)δ(si) + λih(si)],

where λi ∈ (0, 1) models sparsity, i.e., the probability of si being non-zero, δ(si) is the
Dirac delta, and h(si) is the distribution to model the non-zero entries of the sparse
signal, which is assumed to be Gaussian with mean θ and variance φ.

h(si) = N (si; θ, φ) ∀ i = [N ]

I Let λ = [λ1, · · · , λN ].
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Proposed Approach to Gradient Reconstruction: Bayesian SSR

I q = (λ, θ, φ, σ2): set of prior parameters required for the estimation of s.
I We propose the SSR as the MMSE estimation of s where

ŝMMSE = arg min
ŝ

E(‖s− ŝ‖22) = Es|y
[
s|y;q

]
I Sparsity is incorporated through the spike-and-slab prior as we have already seen.
I Spatial correlation is incorporated in the prior p(s) through sparse ratio λ where λi and λj

are correlated through local averaging during the process of updating the parameters.
I In this FL setting, the sparse signal is nothing but the sparsified gradient-sum g(t).
I We adopt a Bayesian approach for the SSR to obtain sMMSE which combines two

powerful inference frameworks: expectation maximization (EM) and approximate message
passing (AMP).

I We use a CS reconstruction algorithm from the class of AMP algorithms [6] to obtain
sMMSE.

I The reconstruction algorithm requires q to estimate sMMSE. For this purpose, we use
EM [7] to estimate the prior parameters q from y.
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Preliminary Results

I This is still an ongoing work but we will present some preliminary results in order to
demonstrate the performance of the proposed algorithm.

I The benchmark technique [8] shown here uses a basic CS reconstruction technique (AMP
algorithm [9]) for reconstruction of the gradients.

I The benchmark method does not take into consideration the spatial correlation property
of the convolutional gradients during their reconstruction at the server.

I The parameters required for the FL procedure are
I For simplicity, we assume a FL setting with 1 user i.e. K = 1, SR = 0.25, CR = 2, η = 0.1.
I We trained a convolutional NN with 3 layers with dimensions ((H,W,D,F )) (5, 5, 5, 1),

(5, 5, 10, 5), (5, 5, 20, 10) followed by a dropout layer, fully connected layer with 320 neurons
and a softmax layer with 10 neurons using MNIST dataset for classification problem.
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Preliminary Results

Figure: Test accuracy with iterations (MNIST dataset).
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Summary

I In the last lecture of this course, we focused on a case study on distributed learning that is
of specific interest to wireless networks.

I We specifically focused on the problem of gradient compression and reconstruction.
I We incorporated the sparsity and spatial correlation properties of the gradients through

aprporpiately chosen priors.
I The introduction of this prior also meant that we need to learn its parameters, which is

where the EM algorithm came into the picture.
I This is yet another example of how appropriate domain knowledge (in this case the

properties of the gradients) could be exploited to develop efficient learning solutions.
I A preprint based on this work will be available on arXiv soon.
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Thank You

Please contact Prof. Dhillon at hdhillon@vt.edu if you have any questions, comments or
suggestions about any of the lectures of this short course.
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