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Lecture Objectives

» Today, we will capture clustering in data by modeling it using GMMs.

» Once we model the data using a GMM, the problem reduces to determining
the parameters of the model.

» These parameters are determined using extremely useful idea of expectation
maximization.

» Along the way, we will also connect GMMs to the k-means algorithm.
» Reference: Kevin Murphy's MLPP.
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Density Estimation: Problem Setup

» Problem: For a given dataset: X = {«;} |, fit z; ~ p(x;).

v

We model p(x;) as a mixture of Gaussians. Most of our discussion in this
lecture will also be applicable to general mixture models.

Let's recall our notation from the last module:

v

» Latent variable: z; € {1,2,...,k} with p(z; = j) = 7;.
» Likelihood: x;|{z; = j} ~ N'(m;, X;) is the pdf of the ji* Gaussian.

~ 1 1 Ty—1 )
Xr;|z; = = eX ——\r; — ) xr; — i
plode =)= oo (- ) e
Objective: Estimate the following parameters:

0 ={m {m;}i—1, {25}

Let's discuss maximum likelihood estimation for this problem next.

v

v
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Gaussian Mixture Model: Maximum Likelihood Estimation
» The ML estimate for this problem is:

0" = arg max Z log p(x;|0)

i=1

n k
= argmax 2; log X;p(.% zi = 7|0)
1= 1=

» The log-sum form is problematic. We don’t get nice factors as before.
» In order to understand this, let's assume for the sake of the argument that
we had labelled data {(x;, z;)}, i.e., 2; is not “latent”. The ML estimate in
this case is:

0" = arg mgX§ log p(w:|2;, 6) + Zl log p(20)

» Problem becomes easier when we have “complete data”. We will use this fact.
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One Way to Get Rid of Log-Sum Form: Hard Assignment

» Let's assume hard assignment of points to clusters (like in k-means):

. plxi,zi =¢) J=¢
p(m,“ ZZ — j) — { 0( 1y ~1 Z) . (3
» In order to make the connection of GMM with k-means even more concrete,
let's consider the following two additional assumptions:
> Pz =j) =m =,V
» Assume “spherical’ Gaussians:

o? 0
Tj=X= :
0 o?
» This gives us
: 1 i — uj||2)
Ti|lzi=j)=———exp| —————
ol =) = e (<120
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Log Likelihood under these Assumptions

» ML estimate for this case is:

0" = argmaleogp x;|0) = argmaleog Zp (i, 2 = j|0)

i=1 ]1

= 1 2= cil0) = 1 |z = ¢, 0)m,.
argmgxz; ogp(x;, z; = ¢;|0) argmg}(; ogp(xilz; = ¢;, 0)m,

= arg max — Z Iz — 5 I;CZ
g

» Recall that this is just the (negative of) average distortion that we
approximately minimized using k-means. Now you know the implicit
assumptions made while using & means algorithm.
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Expectation Maximization: General Idea

» Very useful algorithm for density estimation.

» No need to make any assumptions along the lines of what we just did for
k-means.

» It is also applicable to general mixture models (beyond GMM).
» Here is the general idea:

» E step: Find soft assignment of points to Gaussians, p(z; = j|x;, @), so that
we can write Expected Complete Data Log Likelihood.

» This just assigns soft labels to the data. This is said to “complete” the data.
» M step: Maximize this expected log likelihood to update parameters.

» It is natural to wonder why do we take expectation of the log here. We will
understand this soon.
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Expectation Maximization: Steps

» Let’s first understand how EM works.
» Step 0: Initialize 8 as 80 = {71'(0),{[1,§ HIg {E }

» E step: At time t, we have 8®). Given this, find the assignment probability
of i" point to the j'* Gaussian:

az(;') =p(z = jlx;, 0

0y — p(xi, z = j16V)
p(z:|6®)
_ plzi = 410D)p(xi|z = 5,01)
Z?:l p(zi = j1OW)p(zi|zi = j,00)

» Since p(z; = j|0W) = 7; and p(x;|z = j, 0D is N'(p, %), we have
everything that we need to compute a ) for a given ).

» This gives us soft assignments of pomts to Gaussians and thus completes
our data.
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Expectation Maximization: Steps

» M step: From the E-step, we get the expected (complete data) log

()

likelihood. Assuming the assignments to be fixed a;;’, we determine o+

by maximizing the expected log likelihood as:

04+ = arg maxzz logp x;, 2z = j|0)

i=1 j=1

» This reduces the problem to MLE with Gaussians:

A0+ _ D i aﬁ? 1 zn: 40
] Zz IZJ 1 Z] n =1 Y
ﬂ§t+1) _ Z?; z(j():l
D i1 @
giern _ T o) (@ i) = )
> it ag-)
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Expected Log Likelihood is a (Special) Lower Bound

» Recall the M step from the previous slide:

n k
(1) _ il 0 log (e 2 — 110
0 argmax > (= Jlai, 6) log p(a, z = j|6%)

i=1 j=1

(®)
a;;

» Now, let's revisit our original objective function:

n k
argméaxz; ng;p(ﬂvuzz 710)
i= Jj=
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Applying Jensen’s Inequality

Consider a generic distribution q; = {¢;(7)} and express the original objective as

n k :

. L 4(j)

0" = argmgx E 1 log E 1 p(xi, zi = j10)
i= Jj=

i(j)

(i, 2 = j|6)
Qi(j)

- p
_ 3 log E..
arg max 2 og Eq,

TV
>Eq; logw by Jensen’s Inequality

Let's look at this lower bound carefully next. The idea is select q; = {¢;(j)} that
provides the tightest lower bound.
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Lower Bound

Here is the lower bound on the original likelihood that we derived using Jensen’s

inequality:
oS p(a, 2 = j16)
> D aili)log = .z( )
i=1 j=1 (Y
_ZZQ’L log () “ + Z% logp wlle)
i=1 j=1 4\J :1 j=1
*KL(QiH;?Zz‘@iﬂ)) Ez‘:l log p(x;0) Orlgmal Objective

The first term goes to zero when we select ¢;(j) = p(z; = j|xi, 0) = a;;. This
will give us the tightest lower bound, which will touch the original objective.
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Lower Bound is Expected Complete Data Log Likelihood

Our lower bound from the previous slide was
n

33" () log A2 —310)

— = a:(7)

n k

1
k

_ZZ% )log p(x;, 2 = j|6) — qu’ )log qi(j
7=1

=1 =1 j=1

The second term can be ignored when we do arg max since it does not depend
upon 6. The first term is our Expected Log Likelihood when we substitute
¢i(j) = a;; from the previous slide. This recovers the M step:

n k
6" —argmax y > aijlogp(ai, 2 = j|6)

i=1 j=1
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Expectation Maximization: lllustration of the Lower Bound

..--(}(6,69

=== Q0.0 )

g ()

[MLPP Figure 11.16] Hlustration of EM.
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Summary

With this lecture, we conclude our discussion of the basics of unsupervised
learning. We will go over a case study on distributed learning in wireless networks
in the next lecture. In this lecture, we have covered:

» Gaussian mixture models.
» Interpretation of k means in terms of a specific GMM.

» Density estimation using expectation maximization.
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