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Lecture Objectives

The main objective of this and the next lecture is to explore connections
between estimation theory and popular machine learning algorithms. In
this specific lecture, we will cover:

I Some basics of statistical estimation.
I Interpretation of least squares regression as a maximum likelihood

estimator.
I Interpretation of regularized linear regression as a MAP estimator.
I Basis expansion or feature augmentation to perform polynomial

regression.

H. S. Dhillon 1/29



Let us Start with a Coin Toss
I Consider a biased coin with P (H) = θ∗, where θ∗ is unknown to you.
I You toss the coin n times and get a specific sequence of H and T ,

say H,T, T, . . .H.
I Let the fraction of heads in this sequence be θ̂.
I Question: Can θ̂ be very different from θ∗?
I Answer: Possible but not probable if n is large.
I Hoeffding’s inequality provides a more formal answer:

P (|θ̂ − θ∗| > ε) ≤ 2 exp
(
−2ε2n

)
.

In words, θ̂ is probably close to θ∗ if n is large.
I Take away: One can learn unknown out-of-sample (or true) θ∗ from

in-sample θ̂. Therefore, endowing a distribution on the dataset is
necessary to ensure generalization to unseen data.

I This is explored more formally in Probably Approximately Correct
(PAC) learning (part of “Computational Learning Theory”).
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Statistical Setting

I Think of features X and labels Y as random variables.
I All test and training samples (x, y) ∼ p(x, y).

I For the discrete case, p(x, y) would represent pmf.
I For the continuous case, p(x, y) would represent pdf.
I It is advisable to think in terms of the discrete case to understand

key concepts.
I We assume that (xi, yi) are sampled i.i.d. from p(x, y).
I This reduces the learning problem to learning (or estimating) the

parameters of this (unknown) distribution.
I Not surprisingly, estimation theory is going to play a role in this

development, which is the main topic of this lecture.
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Bayes’ Rule

I Let X and Y be two random variables with joint distribution p(x, y).
Bayes’s rule states that:

p(y|x) =
p(x|y)p(y)

p(x)
.

I Posterior: p(y|x). Knowledge of the outputs after the data has been
revealed to you.

I Prior: p(y). Your belief about the outputs before the data is
revealed to you. This often comes from domain knowledge.

I Likelihood: p(x|y). Likelihood of observing a specific value of input
for a given value of the output. For instance, p(x = j|y = i)
quantifies how likely is x = j when you know the output is y = i.

I Normalization term: p(x). Not very useful for this development
since it is just a normalization term. We will often just say that
p(y|x) ∝ p(x|y)p(y).
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Statistical Estimation

I Frequentist approach: Maximum likelihood estimation.
I Bayesian approach: Maximum a posteriori estimation or Bayesian

estimation.
I We will describe these approaches through the simple coin toss

example that we introduced earlier in the lecture.
I Remember that we are eventually interested in p(y|x). For now, we

will just focus on a single random variable. All the ideas will be
applicable to the conditional distribution as well.
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Statistical Estimation

I You toss a coin few times and observe the following outcomes:
y = {T,H, T,H, T, T}. Think of this as your dataset.

I Our goal is to estimate the underlying distribution.
I We make the following reasonable observations:

I The tosses are independent.
I The outcome is binary.

I This means each coin toss can be thought of as an outcome of a
Bernoulli trial; yi ∼ Bernoulli(θ).

I This becomes your model class.

I Now from this model class, our objective is to find θ̂ (which is
essentially our estimate of true θ∗).

I This is where ML and MAP come into the picture.
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Maximum Likelihood Estimation

I The question we try to answer here is: are there any specific values
of θ that make our dataset y more “likely”?

I This is done by maximizing the likelihood function as follows:

θ̂ML = arg max
θ

p(y|θ)︸ ︷︷ ︸
L(θ)

.

I Likelihood function:
I Note that it is a function of θ for a given y.
I Since all entries in our dataset will be assumed to be i.i.d., we will

always have:

L(θ) =

n∏
i=1

p(yi|θ).
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Maximum Likelihood Estimation: Coin Toss Example

I Likelihood function for our example: L(θ) = θnH(1− θ)nT , where
nH and nT represent the number of heads and tails observed in the
dataset, respectively. Note that n = nH + nT .

I The maximum likelihood estimation problem for this case is:

θ̂ML = arg max
θ

L(θ) = arg max
θ

logL(θ)

= arg max
θ

{nH log θ + nT log(1− θ)}

I Now if you take the partial derivative with respect to θ and set it to
0, you get

θ̂ML =
nH

nH + nT
.
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Optimality of Maximum Likelihood Estimation

I As we will show now, maximum likelihood estimation minimizes KL
divergence. It is “optimal” when our choice of model class is correct
(i.e., θ∗ lies in the model class).

I Reminder: Note that we assumed infinite data to establish this
result.

I Let us now see why maximum likelihood may not always be
sufficient when you have finite data.
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Error Decomposition

Hypothesis Class

Reality

Modeling Error

Estimation Error

Optimization Error

Our Estimate

I Modeling Error: Reality lies outside your chosen hypothesis class.
I Estimation Error: Estimate may be off because of limited data.
I Optimization Error: For instance, the problem could be np hard

because of which some optimization error is unavoidable.
I You may be able to trade one error for the other.
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Bayesian Estimation: MAP
I The general idea of Bayesian statistics is to treat θ as a random

variable instead of being deterministic. Recall that in maximum
likelihood, we treated it as deterministic.

I From Bayes’ rule, we can write:

p(θ|y) =
p(y|θ)p(θ)
p(y)

I Here p(θ) is our prior belief in θ, which was assumed constant before.
As we will see in later lectures, this will also act as a regularizer.

I Specific estimator of interest is the so-called maximum a posteriori
probability (MAP) estimator, which is defined as:

θ̂MAP = arg max
θ

p(θ|y) =
p(y|θ)p(θ)
p(y)

which is just the mode of the posterior.
I MAP and maximum likelihood estimators are the same when θ is

uniform.
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Conjugate Priors

I It is useful to select prior distribution such that when it multiplies
with the likelihood function, the posterior is of the same type (i.e., it
has the same distribution as the prior but with potentially different
parameters).

I The conjugate prior for the Bernoulli likelihood is the Beta
distribution:

p(θ) =
θmH−1(1− θ)mT−1

B(mH,mT)
∼ Beta(mH,mT),

where B(mH,mT) = Γ(mH)Γ(mT)
Γ(mH+mT) and Γ(·) is the Gamma function.

I Here, mH and mT are the hyper parameters (parameters of the
prior).

I We will provide a useful interpretation of these parameters shortly.
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MAP Estimation for our Coin Toss Example

I Choosing Beta distribution as our prior, the MAP estimate is:

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ)
p(y)

= arg max
θ

cθnH(1− θ)nTθmH−1(1− θ)mT−1

= arg max
θ

cθnH+mH−1(1− θ)nT+mT−1

= arg max
θ

Beta(nH +mH, nT +mT),

where we introduced a normalization constant c in the second step
so that we do not have to explicitly track the terms that do not
depend upon θ.

I Think of mH and mT as the “pseudo counts” that are known to us
before we started the experiment (recall that this is a part of the
“prior” distribution).
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MAP Estimation for our Coin Toss Example

I Clearly, θ̂MAP is nothing but the mode of
Beta(nH +mH, nT +mT), which is known to be:

θ̂MAP =
nH +mH − 1

nH +mH + nT +mT − 2

I Note that if we had infinite data, the priors would not have even
mattered. In that case, θ̂MAP = θ̂ML.
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Generalization to Non-Binary Case: Setup and Likelihood Fn
I What if we roll a biased k sided die?
I The random variable X is no longer binary.
I Specifically, P (X = j) = θj , for 1 ≤ j ≤ k.

I Define: θ =


θ1

θ2

...
θk

.
I Example dataset for k = 6: y = {3, 5, 2, 4, 6, 1, 1, 2}.

I Similar to the binary case, our objective here is to estimate θ̂.
I The likelihood function for this case can be derived as:

p(y|θ) =

k∏
j=1

θ
nj

j

where nj =
∑n
i=1 1(yi = j) is simply the number of times j appears

in the dataset of length n.
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Generalization to Non-Binary Case: MAP and ML Estimates
I Conjugate prior for this case is the Dirichlet distribution:

θ ∼ Dirichlet(m1,m2, . . .mk) ∝
k∏
j=1

θ
mj−1
j .

I Simply a generalization of the Beta distribution.
I MAP estimate:

θ̂MAP,j =
nj +mj − 1∑k
l=1(nl +ml)− k

I There are two ways of obtaining the maximum likelihood estimator
from the above result. Either drive the size of dataset to infinity or
use the uniform prior (ml = 1,∀l in this case). This gives

θ̂ML,j =
nj
n

where recall that
∑k
l=1 nl = n.
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Continuous Random Variables: Gaussian Case
I Consider a dataset y = {y1, y2, . . . yn}.
I As noted on the previous slide, our model assumption here is
yi ∼ N (µ, σ2):

p(y|µ, σ2) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
.

I The ML estimates of µ and σ2 can be easily shown to be:

µ̂ML =
1

n

n∑
i=1

yi

σ̂2
ML =

1

n

n∑
i=1

(yi − µ̂ML)2.

I Therefore, the maximum likelihood estimators for the mean and
variance are nothing but the sample mean and (unadjusted or
biased) sample variance.

I For completeness, note that the adjusted (or unbiased) sample
variance is: 1

n−1

∑n
i=1(yi − µ̂)2, where µ̂ is the sample mean.
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Gaussian Model: MAP Estimator

I Recall from our earlier discussion that

θ̂MAP = arg max
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ)
p(y)

.

I For our application, we just need to discuss µ̂MAP. We can therefore,
consider σ2 to be an unknown constant and estimate µ̂MAP.

I Conjugate prior: We assume µ ∼ N (µ0, σ
2
0). Therefore:

p(µ|µ0, σ
2
0) =

1√
2πσ2

0

exp

(
− (µ− µ0)2

2σ2
0

)
.

I Now MAP estimate for µ can be directly expressed as:

µ̂MAP =

∑n
i=1 yi
σ2 + µ0

σ2
0

n
σ2 + 1

σ2
0
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Linear Regression
I Assumes linear relationship between the inputs and outputs:

ŷ = f̂(x) = β0 +

d∑
j=1

βjxj ,

where βj ’s are the weights (also called the learning parameters).
Here, β0 is called the bias feature.

I It can also be expressed in terms of the vector notation:

ŷ =
[
β0 β1 . . . βd

]


1
x1

...
xd

 = βTx = xTβ.

Note the notation: x =

[
1
x

]
.

I Note that β ∈ Rd+1 due to the inclusion of the bias feature.
I While we will assume y ∈ R, the results and insights can be easily

generalized to the case where y is a vector.

H. S. Dhillon 19/29



Visualizing Linear Regression Solution3.2 Linear Regression Models and Least Squares 45
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X, Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XT X.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XT X
is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XT X)−1XT y. (3.6)

Figure: Linear least squares fit from Figure 3.1 of ESL.

I The vertical black line segments represent “error” (yi − ŷi).
I Linear regression essentially tries to minimize the “cumulative error”

across all training points. This is formalized by defining a loss
function, which we do on the next slide.
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Linear (Least Squares) Regression: Loss Function
I We will use the squared loss function (least squares regression):

L(β) =
1

n

n∑
i=1

(yi − ŷi)2 =
1

n

n∑
i=1

(yi − xTi β)2

=
1

n

n∑
i=1

(yi − xi0β0 − xi1β1 . . .− xidβd)2

I This is a convex function in β.
I Our learning objective is:

β̂ = arg min
β

L(β) = arg min
β

1

n

n∑
i=1

(yi − xTi β)2.

I Can be obtained using gradient descent algorithm or directly as:

β̂ = (XTX)−1XTy

where X+ = (XTX)−1XT is the Moore-Penrose pseudo-inverse of
X.
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When Does Squared Loss Make Sense?

I Consider the following generative model.
I x ∼ p(x): Features sampled from an arbitrary distribution. We do

not need to know this distribution.
I Model assumption:

yi|xi ∼ N (βTxi, σ
2).

I Parameters of this model: β and σ2.
I Therefore, the output under this model is

y = βTx +N (0, σ2).

I Assuming σ2 to be an unknown constant, let us determine β̂ML.
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Maximum Likelihood Estimate: β̂ML

I Maximizing the log likelihood function, we get:

β̂ML = arg max
β

n∑
i=1

log p(yi|xi,β)

= arg max
β

n∑
i=1

log

[
1√

2πσ2
exp

(
− (yi − βTxi)2

2σ2

)]

= arg max
β

n∑
i=1

[
− (yi − βTxi)2

2σ2
− 1

2
log(2πσ2)

]

= arg min
β

n∑
i=1

(yi − βTxi)2.

I This is nothing but least squares regression.
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Gaussian Assumption and Outliers

I Since Gaussian is not heavy-tailed, we are essentially assuming
residual errors to be “small” whenever we apply least squares
regression.

I If a few training points exhibit large errors, we call them outliers.
I It should not be surprising now that least squares will not work well

in the presence of outliers.
I Simple fix: Model noise with a heavy-tailed distribution under which

large “errors” are allowed. One possibility is the Laplace distribution:

yi|xi ∼ Laplace(βTxi, b)

p(y|xi,β) =
1

2b
exp

(
−|yi − β

Txi|
b

)
β̂ML = arg min

β

n∑
i=1

|yi − βTxi|.
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MAP Estimate βMAP: Regularization

I A natural question now is whether there is a similar connection
between MAP and the loss function.

I This leads to the idea of Bayesian linear regression or regularized
linear regression.

I As before, consider yi|xi ∼ N (βTxi, σ
2).

I We assume Gaussian prior: β ∼ N (0, σ2
0I).

I In other words, βi’s are i.i.d. and each is ∼ N (0, σ2).
I The MAP estimate can now be expressed as:

βMAP = arg max
β

p(y|X,β)p(β)

p(y|X)

I X: Dataset of the feature vectors of all data points.
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MAP Estimate βMAP

βMAP = arg max
β

p(y|X,β)p(β)

p(y|X)

= arg max
β

log p(y|X,β) + log p(β)

= arg max
β

− n∑
i=1

(yi − βTxi)2

2σ2
−

d∑
j=0

β2
j

2σ2
0



= arg max
β

1

n

− n∑
i=1

(yi − βTxi)2 − σ2

σ2
0︸︷︷︸
λ

d∑
j=0

β2
j


= arg min

β

1

n

[
n∑
i=1

(yi − βTxi)2 + λ‖β‖22

]
This is called regularized regression. Here, λ is the regularization
parameter.
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Polynomial Regression

I For simplicity of exposition, let us consider the case of a single input.
Therefore, each training example is just (x, y).

I We can always define our hypothesis function as an mth order
polynomial of x:

ŷ = f̂(x,β) = β0 + β1x+ β2x
2 + . . .+ βmx

m.

I f̂(x,β) is linear in β even though it is not linear in x. However, it is
just the linearity in terms of β that really matters. We can always
treat each non-linear term as a new “feature”, which is the reason it
is called feature augmentation or basis expansion.

I In general, we can express f̂(x,β) as βTφ(x), where
φ(x) : Rm1 → Rm2 .
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Polynomial Regression

I One example of φ(x) : Rm1 → Rm2 is given below:

x1

x2

x3

→



1
x1

x2

x3

x2
1

x2
2

x2
3

x1x2

...


I Interpretation: A lower dimensional vector is embedded in a higher

dimensional space so as to facilitate linear processing. This is also
what we implicitly do in advanced techniques such as neural
networks.
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Summary

I We provided a brief introduction to statistical estimation.
I Interpreted least squares regression as a maximum likelihood

problem.
I Interpreted regularized linear regression as a MAP estimator.
I Basis expansion or feature augmentation to perform polynomial

regression.
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