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Lecture Objectives

In this lecture, we will complete our discussion of statistical estimation by
covering the classification class. The specific topics are:

v

The idea of Bayes classifier.

» The idea of a Naive Bayes classifier.

» Logistic regression and its underlying generative model.
>

Connection between logistic regression and Naive Bayes classifier.
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Bayes Classifier

» Remember from Lecture 1 that h(z) = E[Y|X = x] minimizes
E[(Y = h(X))?].

» We now do a similar calculation for the classification case (with 0/1
loss model).

> As before, we assume (z,y) ~ p(x,y).

» Multi-class classification problem: y € {1,2,---  k}.

» We are interested in finding a function g(-) that minimizes the
following expected loss:

E[Loss| = Epz.,) [L(y, 9(x))]

k
> Liy,g(x))p (ylfv)] :

y=1

= Lp(z)

> Note that the function g(-) maps x to the set {1,2,...k}.
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Bayes Classifier

E [LOSS] = Ep(m)

k
> Ly, g(=))p (ylw)l :

y=1

» Because of the assumption of the 0/1 loss function, L(y, g(x)) will
be 0 for one term (for which y = g(z)) and 1 for all the others.

» Therefore, the above expression can be written as
E [Loss| = Ep ) [1 = p(g(z)|x)] .

» As we did before, we can again minimize this expression point wise
to arrive at

§=g(x) = arg mgXp(g(w)lw)-

» This is a Bayes classifier. Note that we are effectively maximizing
the posterior here.
» This is what k-NN directly tries to approximate.
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Bayes Classifier

» So, are we done?

» Not so fast! Since we do not have the true distribution, we cannot
implement the Bayes classifier directly.

» We need to estimate it. Here are two approaches we will study:

> Naive Bayes: First estimate p(x|y) and p(y), and then apply Bayes
rule to determine p(y|x). It is a generative approach. Naive because
it approximates p(x|y).

> Logistic regression: We directly estimate p(y|x). This is a
discriminative approach.

» Question: Why do we call the first approach “generative”?

> Let's start with the generative approach.
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Why Naive?

» In order to understand this, let's consider a simple case:
z; €{0,1},Viand y € {1,2,--- | k}.

> In generative approach, we need to approximate p(y) and p(x|y).
Let's see how many parameters do we need to estimate these:

» Estimating p(Y = y): we need to estimate k — 1 parameters, i.e.,
. . . k—1
{p1,p2, - ,pr—1}, since py will be simply 1 — """ pp,.

> Estimating p (X1 = x1, X2 = @2, , Xq = 24|Y = y): we need to
estimate (2¢ — 1) k to characterize this distribution. In particular, for
every y, we need to learn 2¢ — 1 parameters. This is clearly not
feasible even for small values of d.
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Naive Bayes

» Naive Bayes makes the following conditional independence
assumption:

d

Xy =21, Xy =19, , Xa =24y =y) = [[p(Xi = 2|V = ).
i=1

» We observe from above that p(X; = x;|Y = y) needs to be
estimated. Since p(X; = x;|Y = y) is binary distribution, it can be
characterized by estimating just one parameter.

» Thus, we need to estimate d parameters for each Y = y, and hence
the total number of parameters to be estimated is kd, which seems
to be doable compared to (2¢ — 1)k.

» We will revisit Naive Bayes when we explore its connection with
Logistic regression shortly.

> Let's first introduce Logistic regression.
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Logistic Regression: Setup

v

For logistic regression, we consider the following problem setting:

» The features vector: x € R?. Dataset of feature vectors: X.

> The output: y € {0, 1}.

» The distribution of the output conditioned on the features vector:
y|lx ~ Ber(6s).

> The objective is to characterize p(y|x), i.e., we need to estimate 6,

for every z.

» Can we directly use 6, as 6, = BTx? Clearly no. Not confined to
[0, 1].

» This can be achieved by using the sigmoid function:
o(z) = m

» The distribution of the output conditioned on the features vector is
now given by: y|x ~ Ber (O’ (ﬁTm)).
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Logistic Regression

» Using the sigmoid function, we get the following form for the
posterior

ply=1lz) = 0z = 0(8" @) = T —ams

) 1
ply=0z)=1-0,=1-0(8"x) = T o (37a)

where our objective reduces to the estimation of the parameters 3

from the data.

» For prediction, we just need to know which probability in larger, i.e.,
p(y = 1|x) or p(y = 0|z).
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Logistic Regression

» Under this setup, our predicted output ¢ will be 1 if the following
condition holds:

ply = 1]z) > 1

p(y =0z

N S

1+exp(—BTx)
exp(—=BTx) =0

1+exp(—BTz)

1
exp (—BTx)
=0Tz >0.

=log

élog[ ] >0

» We get a linear classifier.
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Logistic Regression: Learning Parameters

Let us recall that we have the following problem setting:
Model: y|x ~ Ber(,).

Dataset: {(x1,y1),(®2,92), , (Tn,Yn)}-
ply=1lz) =0, = m-

v

v

v

v

First goal: B = arg mgx p(y|X, 3).

» Let's first write the likelihood function:

(y|X,8) = Heyw_ 0z, ) Y
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Logistic Regression: Log Likelihood

The log likelihood can be expressed as

M:

LL(ﬂ) = [szOg (9 ) + (1 —yi)log (1 — ‘ng)}

s
Il
_

|

5 o) -0 )

exp (,@TIEZ) 1
1 lyﬂog <1+p(ﬂw)> s (prw))]

[yilog (exp (B"z;)) — log (1 +exp (8" z;))]
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I

2

|

s
Il
_

I
M:

(98" x; —log (1 +exp (87w:))].
1

.
Il

Concave function in 3. Use gradient descent on —LL(03).
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Logistic Regression: MAP Case

» After completing ML estimator, our next step is to do MAP
estimator.

» The MAP estimator can be obtained as follows

Buap = arg max log (p (Bly, X))

= arg max [log (p (y18, X)) + log (p(B))] ,

where we use Gaussian prior 8 ~ N (0,02I), i.e., we have
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Logistic Regression: MAP Case

This gives us:

n d
Buap = arg max > log (p (il B, m:)) + D log (p(B;))

i=1 j=0
d /82
= arg mﬁax Zlog (yi|B, ;) + Z 2— — flog (27r0 )
i=1 7=0 %

H—’
Not function in 3

1 2
= LL - — .
ar g LE(3) — 51 11

As in the case of linear regression, we recover a regularization term.
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Nonlinear Decision Boundaries with Logistic Regression

Remember our discussion on polynomial regression.
Let's construct a similar example for logistic regression too.
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Connection Between Gaussian NB and Logistic Regression

Now, let's connect Gaussian Naive Bayes to logistic regression. We
consider the following setting:

» Y =ye{0,1}.
»pY=1)=0andp(Y =0)=1-90.
Naive Bayes: p(z|y) = H?Ilp(xﬂy).

The distribution of the j* feature x; conditioned on the i label y;
is normal with mean p;; and variance o2, ie.,

J
p(z;lY =yi) = N(sz‘,U]z)-

v

v
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Connection Between Gaussian NB and Logistic Regression

For this setting, we derive p(y = 1|x) as follows

plzly =1Dply =1)
p(x)
_ plxly=1py=1)
>, P(y)p(y)
1

- p(z|y=0)p(y=0) *
1+ ply=Dpy=1)

ply = 1lz) =

P VirginiaTech H. S. Dhillon 16/20

Invent the Future®



Connection Between Gaussian NB and Logistic Regression

Taking the exp log for the term in the denominator of the above
expression, we get

1

p(2|y=0)p(y=0)
1+ exp [10% (Wﬂ

1
1+ exp {log (ppiﬁiliigg) + log (PEy 0;)}
1

p(x;ly=20 _
1+ exp |log H?Zl pEx]Iz — 1; + log (%)
"--;Z-¢—---’

T
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Connection Between Gaussian NB and Logistic Regression

Now let's look at the term 7 carefully:
1 —(wj—uj())Z)
stely=0) _ 7o (U

Cop(zily=1)  _1 —(2 =)’
p( le ) \/QﬂgfeXp( 120?31 )

T
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Connection Between Gaussian NB and Logistic Regression
Taking the log of the above expression, we get
2 2
— (@5 — pjo)” | (x5 — pj1)

2032» + 20]2

log (1) =

—m? — ,u?o + 2z 50 + .%‘? + M?l —2zp51

2
20'j

2 2
_ (2%‘0 — 2#3‘1) zj+ K51 — Mo

2 2
2Uj 20'j

Linear Constant

Qi1 — 240
- _ (W) z; — Constant.
95

—_————
B;

Using this, we recover the logistic regression form:

1
ply = 1lz) = m-
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Summary

This concludes our discussion on statistical estimation and its role in
machine learning.

Today's lecture focused on the estimation problem. Specifically, we
covered:

v

The idea of Bayes classifier.
The idea of a Naive Bayes classifier.

Logistic regression and its underlying generative model.

vV vv

Connection between logistic regression and Naive Bayes classifier.
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